1
|
Gharbi T, Liu C, Khan H, Zhang Z, Yang GY, Tang Y. Hypoxic Preconditioned Neural Stem Cell-Derived Extracellular Vesicles Contain Distinct Protein Cargo from Their Normal Counterparts. Curr Issues Mol Biol 2023; 45:1982-1997. [PMID: 36975497 PMCID: PMC10047917 DOI: 10.3390/cimb45030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Hypoxic preconditioning has been demonstrated to increase the resistance of neural stem cells (NSCs) to hypoxic conditions, as well as to improve their capacity for differentiation and neurogenesis. Extracellular vesicles (EVs) have recently emerged as critical mediators of cell–cell communication, but their role in this hypoxic conditioning is presently unknown. Here, we demonstrated that three hours of hypoxic preconditioning triggers significant neural stem cell EV release. Proteomic profiling of EVs from normal and hypoxic preconditioned neural stem cells identified 20 proteins that were upregulated and 22 proteins that were downregulated after hypoxic preconditioning. We also found an upregulation of some of these proteins by qPCR, thus indicating differences also at the transcript level within the EVs. Among the upregulated proteins are CNP, Cyfip1, CASK, and TUBB5, which are well known to exhibit significant beneficial effects on neural stem cells. Thus, our results not only show a significant difference of protein cargo in EVs consequent to hypoxic exposure, but identify several candidate proteins that might play a pivotal role in the cell-to-cell mediated communication underlying neuronal differentiation, protection, maturation, and survival following exposure to hypoxic conditions.
Collapse
|
2
|
Lee EJ, Hong SK, Choi DH, Gum SI, Hwang MY, Kim DS, Oh JW, Lee ES. Three-dimensional visualization of cerebral blood vessels and neural changes in thick ischemic rat brain slices using tissue clearing. Sci Rep 2022; 12:15897. [PMID: 36151103 PMCID: PMC9508267 DOI: 10.1038/s41598-022-19575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
Blood vessels are three-dimensional (3D) in structure and precisely connected. Conventional histological methods are unsuitable for their analysis because of the destruction of functionally important topological 3D vascular structures. Tissue optical clearing techniques enable extensive volume imaging and data analysis without destroying tissue. This study therefore applied a tissue clearing technique to acquire high-resolution 3D images of rat brain vasculature using light-sheet and confocal microscopies. Rats underwent middle cerebral artery occlusion for 45 min followed by 24 h reperfusion with lectin injected directly into the heart for vascular staining. For acquiring 3D images of rat brain vasculature, 3-mm-thick brain slices were reconstructed using tissue clearing and light-sheet microscopy. Subsequently, after 3D rendering, the fitting of blood vessels to a filament model was used for analysis. The results revealed a significant reduction in vessel diameter and density in the ischemic region compared to those in contralesional non-ischemic regions. Immunostaining of 0.5-mm-thick brain slices revealed considerable neuronal loss and increased astrocyte fluorescence intensity in the ipsilateral region. Thus, these methods can provide more accurate data by broadening the scope of the analyzed regions of interest for examining the 3D cerebrovascular system and neuronal changes occurring in various brain disorders.
Collapse
Affiliation(s)
- Eun-Joo Lee
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea
| | - Sung-Kuk Hong
- Department of Anatomy, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, South Korea
| | - Dong-Hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator, Gwanggyo-Ro 107, Yeongtong-Gu, Suwon, 16229, South Korea
| | - Sang-Il Gum
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea
| | - Mee Yul Hwang
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, South Korea
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, South Korea.
- Department of Anatomy, Yonsei University College of Medicine, Yonsei-Ro 50, Seodaemun-Gu, Seoul, 03722, South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Yonsei-Ro 50, Seodaemun-Gu, Seoul, 03722, South Korea.
| | - Eun-Shil Lee
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea.
| |
Collapse
|
3
|
PRG-1 prevents neonatal stimuli-induced persistent hyperalgesia and memory dysfunction via NSF/Glu/GluR2 signaling. iScience 2022; 25:104989. [PMID: 36093041 PMCID: PMC9460187 DOI: 10.1016/j.isci.2022.104989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Neonatal repetitive noxious stimuli (RNS) has been shown to cause long-term harmful effects on nociceptive processing, learning, and memory which persist until adulthood. Plasticity-related gene 1 (PRG-1) regulates synaptic plasticity and functional reorganization in the brain during neuronal development. In this study, neonatal RNS rats were established by repetitive needle pricks to neonatal rats on all four feet to model repetitive pain exposure in infants. Neonatal RNS caused thermal hyperalgesia, mechanical allodynia, learning, and memory impairments which manifested in young rats and persisted until adulthood. Hippocampal PRG-1/N-ethylmaleimide sensitive fusion protein (NSF) interaction was determined to be responsible for the RNS-induced impairment via enhanced extracellular glutamate release and AMPAR GluR2 trafficking deficiency in a cell-autonomous manner. These pathways likely act synergistically to cause changes in dendritic spine density. Our findings suggest that PRG-1 prevents the RNS-induced hyperalgesia, learning, and memory impairment by regulating synaptic plasticity via NSF/Glu/GluR2 signaling. Neonatal RNS induced hyperalgesia, learning, and memory impairment until adulthood. PRG-1 attenuated RNS-induced impairments by dendritic spine regulation. PRG-1 prevents RNS-induced impairments via NSF/Glu/GluR2 signaling.
Collapse
|
4
|
Changes in Brain Electrical Activity after Transient Middle Cerebral Artery Occlusion in Rats. Neurol Int 2022; 14:547-560. [PMID: 35893279 PMCID: PMC9326608 DOI: 10.3390/neurolint14030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Objectives. Ischemic stroke is a leading cause of death and disability worldwide. To search for new therapeutic and pharmacotherapeutic strategies, numerous models of this disease have been proposed, the most popular being transient middle cerebral artery occlusion. Behavioral and sensorimotor testing, biochemical, and histological methods are traditionally used in conjunction with this model to assess the effectiveness of potential treatment options. Despite its wide overall popularity, electroencephalography/electrocorticography is quite rarely used in such studies. Materials and methods. In the present work, we explored the changes in brain electrical activity at days 3 and 7 after 30- and 45-min of transient middle cerebral artery occlusion in rats. Results. Cerebral ischemia altered the amplitude and spectral electrocorticogram characteristics, and led to a reorganization of inter- and intrahemispheric functional connections. Ischemia duration affected the severity as well as the nature of the observed changes. Conclusions. The dynamics of changes in brain electrical activity may indicate a spontaneous partial recovery of impaired cerebral functions at post-surgery day 7. Our results suggest that electrocorticography can be used successfully to assess the functional status of the brain following ischemic stroke in rats as well as to investigate the dynamics of functional recovery.
Collapse
|
5
|
Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochem Res 2022; 47:2198-2210. [PMID: 35513760 DOI: 10.1007/s11064-022-03606-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.
Collapse
|
6
|
Lu N, Bai R, Liu B, Cheng W, Wu Z. Attenuation of the cytoprotection induced by hypoxic preconditioning upon transfection with BNIP3-siRNA in human neuroblastoma SH-SY5Y cells. Int J Neurosci 2021:1-10. [PMID: 34871150 DOI: 10.1080/00207454.2021.2015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the functional role of hypoxic preconditioning (HPC) in human neuroblastoma cells. METHODS BNIP3 small-interfering RNA (BNIP3-siRNA) sequence was synthesized and used to transfect human neuroblastoma SH-SY5Y cell lines. Thereafter, BNIP3 expression at mRNA and protein levels and its effects on the cell proliferation were analyzed. The most effective pair of siRNA was selected to knockdown the expression level of BNIP3. Moreover, the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells were explored to further reveal the possible mechanisms underlying HPC. RESULTS BNIP3-siRNA attenuated the protective effects of HPC by decreasing the cell viability, increasing the enzymatic activity of caspase-3 and 9, increasing the rate of apoptosis, and increasing the protein expression level of activated caspase-3. Additionally, BNIP3-siRNA had no significant influence on the expression level of HIF-1α induced by HPC, while it substantially inhibited HPC-induced BNIP3/Beclin1 and autophagy. CONCLUSIONS HPC promoted autophagy through regulating BNIP3 to reduce OGD/R.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruiying Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bo Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zekun Wu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Repetitive Treatment with Volatile Anesthetics Does Not Affect the In Vivo Plasma Concentration and Composition of Extracellular Vesicles in Rats. Curr Issues Mol Biol 2021; 43:1997-2010. [PMID: 34889902 PMCID: PMC8929111 DOI: 10.3390/cimb43030137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. Methods: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. Results: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. Conclusion: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.
Collapse
|
8
|
Liu X, Xie Z, Li S, He J, Cao S, Xiao Z. PRG-1 relieves pain and depressive-like behaviors in rats of bone cancer pain by regulation of dendritic spine in hippocampus. Int J Biol Sci 2021; 17:4005-4020. [PMID: 34671215 PMCID: PMC8495398 DOI: 10.7150/ijbs.59032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Pain and depression, which tend to occur simultaneously and share some common neural circuits and neurotransmitters, are highly prevalent complication in patients with advanced cancer. Exploring the underlying mechanisms is the cornerstone to prevent the comorbidity of chronic pain and depression in cancer patients. Plasticity-related gene 1 (PRG-1) protein regulates synaptic plasticity and brain functional reorganization during neuronal development or after cerebral lesion. Purinergic P2X7 receptor has been proposed as a therapeutic target for various pain and neurological disorders like depression in rodents. In this study, we investigated the roles of PRG-1 in the hippocampus in the comorbidity of pain and depressive-like behaviors in rats with bone cancer pain (BCP). Methods: The bone cancer pain rat model was established by intra-tibial cell inoculation of SHZ-88 mammary gland carcinoma cells. The animal pain behaviors were assessed by measuring the thermal withdrawal latency values by using radiant heat stimulation and mechanical withdrawal threshold by using electronic von Frey anesthesiometer, and depressive-like behavior was assessed by sucrose preference test and forced swim test. Alterations in the expression levels of PRG-1 and P2X7 receptor in hippocampus were separately detected by using western blot, immunofluorescence and immunohistochemistry analysis. The effects of intra-hippocampal injection of FTY720 (a PRG-1/PP2A interaction activator), PRG-1 overexpression or intra-hippocampal injection of A438079 (a selective competitive P2X7 receptor antagonist) were also observed. Results: Carcinoma intra-tibia injection caused thermal hyperalgesia, mechanical allodynia and depressive-like behaviors in rats, and also induced the deactivation of neurons and dendritic spine structural anomalies in the hippocampus. Western blot, immunofluorescence and immunohistochemistry analysis showed an increased expression of PRG-1 and P2X7 receptor in the hippocampus of BCP rats. Intra-hippocampal injection of FTY720 or A438079 attenuated both pain and depressive-like behaviors. Furthermore, overexpression of PRG-1 in hippocampus has similar analgesic efficacy to FTY720. In addition, they rescued neuron deactivation and dendritic spine anomalies. Conclusion: The results suggest that both PRG-1 and P2X7 receptor in the hippocampus play important roles in the development of pain and depressive-like behaviors in bone cancer condition in rats by dendritic spine regulation via P2X7R/PRG-1/PP2A pathway.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, China
| | - Zhuo Xie
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Site Li
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
9
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Yu B, Yao Y, Zhang X, Ruan M, Zhang Z, Xu L, Liang T, Lu J. Synergic Neuroprotection Between Ligusticum Chuanxiong Hort and Borneol Against Ischemic Stroke by Neurogenesis via Modulating Reactive Astrogliosis and Maintaining the Blood-Brain Barrier. Front Pharmacol 2021; 12:666790. [PMID: 34220506 PMCID: PMC8242197 DOI: 10.3389/fphar.2021.666790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Background:Ligusticum chuanxiong Hort (LCH) is a famous ethnomedicine in Asia known for its excellent output on stroke treatment, and borneol usually acts as an assistant for its reducing permeability of the blood–brain barrier (BBB) after stroke. Although their synergy against brain ischemia was verified in previous studies, the potential mechanism is still unknown. Methods: The research aimed to explore the exact synergic mechanisms between LCH and borneol on neurogenesis within the areas of the dentate gyrus and subventricular zone. After treating middle cerebral artery occlusion rats with LCH (0.1 g/kg) and/or borneol (0.08 g/kg), the neurological severity score, brain infarct ratio, Nissl staining, Evans blue permeability, BBB ultrastructure, and expressions of von Willebrand factor and tight junction–associated proteins were measured. Co-localizations of Nestin+/BrdU+ and doublecortin+/BrdU+, and expressions of neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) were observed under a fluorescence microscope. Moreover, astrocyte polarization markers of complement component 3 and pentraxin 3, and relevant neurotrophins were also detected by immunoblotting. Results: Basically, LCH and borneol had different focuses, although both of them decreased infarct areas, and increased quantity of Nissl bodies and expression of brain-derived neurotrophic factor. LCH increased the neurological severity score, NeuN+ cells, and the ratios of Nestin+/BrdU+ and doublecortin+/BrdU+, and decreased GFAP+ cells and ciliary neurotrophic factor expression. Additionally, it regulated the expressions of complement component 3 and pentraxin 3 to transform astrocyte phenotypes. Borneol improved BBB ultrastructure and increased the expressions of von Willebrand factor, tight junction–associated proteins, vascular endothelial growth factor, and vascular endothelial growth factor receptor 2. Unexpectedly, their combined therapy showed more obvious regulations on the Nissl score, Evans blue permeability, doublecortin+/BrdU+, NeuN+ cells, brain-derived neurotrophic factor, and vascular endothelial growth factor than both of their monotherapies. Conclusions: The results indicated that LCH and borneol were complementary to each other in attenuating brain ischemia by and large. LCH mainly promoted neural stem cell proliferation, neurogenesis, and mature neuron preservation, which was probably related to the transformation of reactive astrocytes from A1 subtype to A2, while borneol preferred to maintain the integrity of the BBB, which provided neurogenesis with a homeostatic environment.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Ruan
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Zhennian Zhang
- Department of Encephalopathy, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinfu Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Huang L, Wan Y, Dang Z, Yang P, Yang Q, Wu S. Hypoxic preconditioning ameliorated neuronal injury after middle cerebral artery occlusion by promoting neurogenesis. Brain Behav 2020; 10:e01804. [PMID: 32841552 PMCID: PMC7559635 DOI: 10.1002/brb3.1804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Sequelae of stroke were mainly caused by neuronal injury. Oxygen is a key factor affecting the microenvironment of neural stem cells (NSCs), and oxygen levels are used to promote NSC neurogenesis. In this study, effects of intermittent hypoxic preconditioning (HPC) on neurogenesis were investigated in a rat model of middle cerebral artery occlusion (MCAO). METHODS SD rats were used to establish the MCAO model. Nissl staining and Golgi staining were used to confirm the neuronal injury status in the MCAO model. Immunofluorescence, transmission electron microscopy, Western blot, and qPCR were used to observe the effects of HPC on neurogenesis. At the same time, the hypothesis that HPC could affect proliferation, apoptosis, differentiation, and migration of NSC was verified in vitro. RESULTS Hypoxic preconditioning significantly ameliorated the neuronal injury induced by MCAO. Compared with MCAO group, the dendrites, Edu+ /SOX2+ , Edu+ /DCX+ , Edu+ /NeuN+ , Edu+ /GFAP+ , and Edu+ /Tubulin+ positive cells in the HPC + MCAO group exhibited significantly difference. Similarly, axonal and other neuronal injuries in the HPC + MCAO group were also ameliorated. In the in vitro experiments, mild HPC significantly enhanced the viability of NSCs, promoted the migration of differentiated cells, and reduced apoptosis. CONCLUSIONS Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.
Collapse
Affiliation(s)
- Lu Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Yaqi Wan
- Qinghai Provincial People's Hospital, Xining, China
| | - Zhancui Dang
- Qinghai University Medical College, Xining, China
| | - Peng Yang
- Qinghai Provincial People's Hospital, Xining, China
| | - Quanyu Yang
- Qinghai University Medical College, Xining, China
| | - Shizheng Wu
- Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|