1
|
Alimohammadi S, Mohaddes G, Keyhanmanesh R, Athari SZ, Azizifar N, Farajdokht F. Intranasal AdipoRon mitigates motor and cognitive deficits in hemiparkinsonian rats through neuroprotective mechanisms against oxidative stress and synaptic dysfunction. Neuropharmacology 2025; 262:110180. [PMID: 39393589 DOI: 10.1016/j.neuropharm.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
While motor symptoms are the most well-known manifestation of Parkinson's disease (PD), patients may also suffer from non-motor signs like cognitive impairments. The adiponectin receptor agonist AdipoRon (Adipo) has shown neuroprotective effects in preclinical studies. The objective of this study was to determine the potential benefits of chronic intranasal treatment of Adipo on motor function and cognitive performance in a hemiparkinsonian rat model caused by injecting 6-hydroxydopamine (6-OHDA) into the left forebrain bundle. After one week, PD rats were given either a vehicle or one of three dosages of Adipo (0.1, 1, and 10 μg) or levodopa (10 mg/kg orally) daily for 21 days. Recognition and spatial memory were determined using the novel object recognition test (NORT) and the Barnes maze test, respectively. The hippocampal tissues of the animals were harvested to examine oxidative stress status as well as the protein expressions of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95). In hemiparkinsonian rats, motor impairments, recognition memory, and spatial memory were all improved by chronic intranasal Adipo at 1 and 10 μg. Furthermore, we found that unilateral 6-OHDA injection elevated hippocampal oxidative stress (ROS) while concurrently reducing total antioxidant capacity (TAC), BDNF, PSD-95, and antioxidant enzymes (SOD, GPx). However, Adipo 10 μg significantly reduced these biochemical alterations in the hippocampus of 6-OHDA-lesioned rats. Chronic intranasal Adipo ameliorated spatial and recognition memory deterioration in hemiparkinsonian rats, presumably by increasing hippocampal synaptic protein levels, reducing oxidative stress, and increasing BDNF.
Collapse
Affiliation(s)
- Soraya Alimohammadi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Khrieba MO, Hegazy SK, Mustafa W, El-Haggar SM. Repurposing celecoxib as adjuvant therapy in patients with Parkinsonian disease: a new therapeutic dawn: randomized controlled pilot study. Inflammopharmacology 2024; 32:3729-3738. [PMID: 39340691 DOI: 10.1007/s10787-024-01567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The clinical presentations of Parkinson's disease (PD), a chronic neurodegenerative condition, include bradykinesia, hypokinesia, stiffness, resting tremor, and postural instability. Recently, neuroinflammation is involved in pathogenesis of PD. Application of nonsteroidal anti-inflammatory drugs captured attention to treat these neuroinflammation. AIM To investigate the possible effectiveness of celecoxib in patients with PD treated with conventional treatment. METHODS Sixty outpatients who fulfilled the inclusion requirements for PD were enrolled in this randomized, prospective, and controlled study. The patients were allocated into two groups at random (n = 30); the control group received standard PD treatment, consisting of levodopa/carbidopa, and the celecoxib group received standard PD treatment plus celecoxib. A neurologist evaluated each patient at the beginning of the treatment and after 6 months. Assessment of Unified Parkinson's disease rating scale (UPDRS) for each patient. Before and after treatment, α -synuclein (α-Syn), tumor necrosis factor alpha (TNF-α), Toll like receptors-4 (TLR-4), nuclear factor erythroid 2-related factor 2 (Nrf-2) and brain-derived neurotropic factor (BDNF) were assessed. Paired and unpaired t tests were used to assess statistical significance within and between groups respectively. RESULTS The celecoxib group exhibited a significant and statistical reduction in the level of measured parameters by unpaired t test as followed: TLR-4 (p = 0.004), TNF-α (p = 0.042), and α-Syn (p = 0.004) apart from a significant increase in BDNF (p = 0.0005) and Nrf-2 (p = 0.004), in comparison with the control group. Also, UPDRS was significantly decreased in celecoxib group (p < 0.05). CONCLUSION Celecoxib could be a promising adjuvant therapy in managing patients with PD. TRIAL REGISTRATION NUMBER NCT05962957.
Collapse
Affiliation(s)
- Mohannad O Khrieba
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Wessam Mustafa
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Elfiky MM, Saad HM, Batiha GES. Therapeutic Potential Effect of Glycogen Synthase Kinase 3 Beta (GSK-3β) Inhibitors in Parkinson Disease: Exploring an Overlooked Avenue. Mol Neurobiol 2024; 61:7092-7108. [PMID: 38367137 PMCID: PMC11338983 DOI: 10.1007/s12035-024-04003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Al Minufya, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
5
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
de Oliveira Segundo VH, de Azevedo KPM, de Medeiros GCBS, Mata ÁNDS, Piuvezam G. Association between sedentary behavior and Brain-Derived Neurotrophic Factor (BDNF) in children and adolescents: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0299024. [PMID: 38442097 PMCID: PMC10914284 DOI: 10.1371/journal.pone.0299024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND There is evidence in the literature suggesting that high time spent in sedentary behavior (SB) can reduce the Brain-Derived Neurotrophic Factor (BDNF) levels, an important neurotrophin that plays a role in modulating cognition, learning and memory. Children and adolescents usually spend many hours a day on SB, either sitting for a long time and/or using screen equipment. OBJECTIVE The aim of this study is to describe a systematic review and meta-analysis protocol on the associations between SB and BDNF levels in children and adolescents. METHODS This protocol is guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols and was published in the International Prospective Register of Systematic Reviews database (PROSPERO: CRD42023392246). The databases that will be searched are EMBASE, Scopus, ScienceDirect, Web of Science, SPORTDiscus, CINAHL, and PubMed. Cross-sectional and cohort studies conducted with children and adolescents (5 to 19 yr) that analyzed the association between SB and BDNF will be included in the systematic review. The characteristics of the studies, methodological aspects, and main results will be described. Then, the risk of bias (assessed by STROBE and Newcastle-Ottawa scales) and the level of evidence (assessed by the GRADE tool) from included studies will be evaluated. Sub-group analysis will also be performed. Two experienced reviewers will perform the studies selection, data extraction, and methodological quality assessment. CONCLUSION This systematic review and meta-analysis will analyze the association between SB and BDNF in children and adolescents. The results will provide subsidies to better understand this relationship and will strengthen evidence-based practice for both health professionals and future researches.
Collapse
Affiliation(s)
- Victor Hugo de Oliveira Segundo
- Department of Public Health, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Systematic Review and Meta-analysis Laboratory (Lab-Sys/CNPq), Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Kesley Pablo Morais de Azevedo
- Department of Public Health, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Systematic Review and Meta-analysis Laboratory (Lab-Sys/CNPq), Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Gidyenne Christine Bandeira Silva de Medeiros
- Department of Public Health, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Systematic Review and Meta-analysis Laboratory (Lab-Sys/CNPq), Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Ádala Nayana de Sousa Mata
- Department of Public Health, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Systematic Review and Meta-analysis Laboratory (Lab-Sys/CNPq), Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Grasiela Piuvezam
- Department of Public Health, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Systematic Review and Meta-analysis Laboratory (Lab-Sys/CNPq), Federal University of Rio Grande do Norte, Natal/RN, Brazil
| |
Collapse
|
7
|
Gong X, Huang M, Chen L. NRF1 mitigates motor dysfunction and dopamine neuron degeneration in mice with Parkinson's disease by promoting GLRX m 6 A methylation through upregulation of METTL3 transcription. CNS Neurosci Ther 2024; 30:e14441. [PMID: 37735974 PMCID: PMC10916419 DOI: 10.1111/cns.14441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The feature of Parkinson's disease (PD) is the heavy dopaminergic neuron loss of substantia nigra pars compacta (SNpc), while glutaredoxin (GLRX) has been discovered to modulate the death of dopaminergic neurons. In this context, this study was implemented to uncover the impact of GRX1 on motor dysfunction and dopamine neuron degeneration in PD mice and its potential mechanism. METHODS A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. After gain- and loss-of-function assays in mice, motor coordination was assessed using rotarod, pole, and open-field tests, and neurodegeneration in mouse SNpc tissues was determined using immunohistochemistry of tyrosine hydroxylase and Nissl staining. NRF1, methyltransferase-like 3 (METTL3), and GLRX expression in SNpc tissues were evaluated using qRT-PCR, Western blot, and immunohistochemistry. The N6-methyladenosine (m6 A) levels of GLRX mRNA were examined using MeRIP. The relationship among NRF1, METTL3, and GLRX was determined by RIP, ChIP, and dual luciferase assays. RESULTS Low GLRX, METTL3, and NRF1 expression were observed in MPTP-induced mice, accompanied by decreased m6 A modification level of GLRX mRNA. GLRX overexpression alleviated motor dysfunction and dopamine neuron degeneration in MPTP-induced mice. METTL3 promoted m6 A modification and IGF2BP2-dependent stability of GLRX mRNA, and NRF1 increased METTL3 expression by binding to METTL3 promoter. NRF1 overexpression increased m6 A modification of GLRX mRNA and repressed motor dysfunction and dopamine neuron degeneration in MPTP-induced mice, which was counteracted by METTL3 knockdown. CONCLUSION Conclusively, NRF1 constrained motor dysfunction and dopamine neuron degeneration in MPTP-induced PD mice by activating the METTL3/GLRX axis.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| |
Collapse
|
8
|
Liu T, Li G. miR-15b-5p transcription mediated by CREB1 protects against inflammation and apoptosis in Parkinson disease models by inhibiting AXIN2 and activating Wnt/β-catenin. J Neuropathol Exp Neurol 2023; 82:995-1009. [PMID: 37944015 DOI: 10.1093/jnen/nlad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Parkinson disease (PD) is a major neurodegenerative disease that greatly undermines people's health and for which effective therapeutic strategies are currently limited. This study dissected the effects of expression changes of AXIN2, a modulator of the Wnt/beta-catenin signaling pathway, the transcription factor CREB1, and of the microRNA miR-15b-5p on apoptosis and the inflammatory response in a PD mouse model in vivo and in a cellular PD model in vitro. The analyses demonstrated low CREB1 and miR-15b-5p expression and high AXIN2 expression in both models. miR-15b-5p overexpression or AXIN2 knockdown alleviated the inflammatory response indicated by decreased levels of TNF-α, IL-6, and IL-1β and apoptosis indicated by decreased levels of cleaved caspase-3 and Bax and elevated Bcl-2. Protection by miR-15b-5p upregulation was counteracted by the simultaneous overexpression of AXIN2. miR-15b-5p targeted AXIN2. CREB1 promoted miR-15b-5p expression, which activated the Wnt/β-catenin pathway by inhibiting AXIN2. Collectively, the data indicate that transcriptional expression of miR-15b-5p can be promoted by CREB1 to inhibit AXIN2 and activate Wnt/β-catenin, thereby reducing the inflammatory response and apoptosis in these PD models. These data suggest the CREB1/miR-15b-5p/AXIN2 axis is a potential therapeutic target in PD patients.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
9
|
Degirmenci Y, Angelopoulou E, Georgakopoulou VE, Bougea A. Cognitive Impairment in Parkinson's Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1756. [PMID: 37893474 PMCID: PMC10608778 DOI: 10.3390/medicina59101756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Cognitive impairment in patients with Parkinson's disease (PD) is one of the commonest and most disabling non-motor manifestations during the course of the disease. The clinical spectrum of PD-related cognitive impairment includes subjective cognitive decline (SCD), mild cognitive impairment (MCI) and PD dementia (PDD). As the disease progresses, cognitive decline creates a significant burden for the family members and/or caregivers of patients with PD, and has a great impact on quality of life. Current pharmacological treatments have demonstrated partial efficacy and failed to halt disease progression, and novel, effective, and safe therapeutic strategies are required. Accumulating preclinical and clinical evidence shows that several agents may provide beneficial effects on patients with PD and cognitive impairment, including ceftriaxone, ambroxol, intranasal insulin, nilotinib, atomoxetine, mevidalen, blarcamesine, prasinezumab, SYN120, ENT-01, NYX-458, GRF6021, fosgonimeton, INT-777, Neuropeptide S, silibinin, osmotin, cordycepin, huperzine A, fibroblast growth factor 21, Poloxamer 188, ginsenoside Rb1, thioredoxin-1, tangeretin, istradefylline and Eugenia uniflora. Potential underlying mechanisms include the inhibition of a-synuclein aggregation, the improvement of mitochondrial function, the regulation of synaptic plasticity, an impact on the gut-brain axis, the modulation of neuroinflammation and the upregulation of neurotrophic factors, as well as cholinergic, dopaminergic, serotoninergic and norepinephrine neurotransmission. In this updated overview, we aim to cover the clinical aspects of the spectrum of PD-related cognitive impairment and discuss recent evidence on emerging treatment approaches that are under investigation at a preclinical and clinical level. Finally, we aim to provide additional insights and propose new ideas for investigation that may be feasible and effective for the spectrum of PD-related cognitive impairment.
Collapse
Affiliation(s)
- Yildiz Degirmenci
- Department of Neurology, School of Medicine, Istanbul Health and Technology University, 34093 Istanbul, Turkey;
- Parkinson’s Disease and Movement Disorders Unit, Neurology Clinic, Sisli Kolan International Hospital, 34384 Istanbul, Turkey
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece;
| | | | - Anastasia Bougea
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece;
| |
Collapse
|
10
|
Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS, Klann IP, Nogueira CW, Sampaio TB, Pinton S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75 NTR pathway. Life Sci 2023; 324:121711. [PMID: 37088413 DOI: 10.1016/j.lfs.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiza Souza Marques
- Federal University of Santa Maria - Campus Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana CEP 97500-970, RS, Brazil.
| |
Collapse
|
11
|
Leem YH, Park JS, Park JE, Kim DY, Kim HS. Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson's disease. Neurochem Int 2023; 165:105519. [PMID: 36931345 DOI: 10.1016/j.neuint.2023.105519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Parkinson's disease (PD) belongs to an α-synucleinopathy and manifests motor dysfunction attributed to nigrostriatal dopaminergic degeneration. In clinical practice, the beneficial role of physical therapy such as motor skill learning training has been recognized in PD-linked motor defects. Nevertheless, the disease-modifying effects of motor skill learning training on PD-related pathology remain unclear. Here, we investigated the disease-modifying effects of rotarod walking exercise (RWE), a modality of motor skill learning training, in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In motor function and dopaminergic degeneration, RWE improved MPTP-induced deficits. In addition, RWE enhanced the expression of neurotrophic factors BDNF/GDNF, PGC1-α, Nurr1, and p-AMPK, thereby recovering dopaminergic neuronal cell death. Moreover, RWE inhibited microglial activation and the expression of pro-inflammatory markers, such as p-IκBα, iNOS, IL-1β, TNF-α, and cathepsin D, while elevating anti-inflammatory IL-10 and TGF-β. RWE also decreased oxidative stress markers in the substantia nigra, such as 4-HNE and 8-OHdG-positive cells, while increasing Nrf2-controlled antioxidant enzymes. Regarding the effect of RWE on α-synuclein, it reduced the monomer/oligomer forms of α-synuclein and phosphorylation at serine 129. Further mechanistic studies revealed that RWE suppressed the expression of matrix metalloproteinase-3 and p-GSK3β (Y216), which play key roles in α-synuclein aggregation. These data collectively suggest that inhibition of neuroinflammation and α-synuclein oligomerization by RWE may contribute to the improvement of PD pathology.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Do-Youn Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
12
|
Xu XJ, Pan T, Fan HJ, Wang X, Yu JZ, Zhang HF, Xiao BG, Li ZY, Zhang B, Ma CG, Chai Z. Neuroprotective effect of hyperoside in MPP +/MPTP -induced dopaminergic neurodegeneration. Metab Brain Dis 2022; 38:1035-1050. [PMID: 36576692 DOI: 10.1007/s11011-022-01153-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the pathological loss of nigrostriatal dopaminergic neurons, which causes an insufficient release of dopamine (DA) and then induces motor and nonmotor symptoms. Hyperoside (HYP) is a lignan component with anti-inflammatory, antioxidant, and neuroprotective effects. In this study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active neurotoxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) were used to induce dopaminergic neurodegeneration. The results showed that HYP (100 µg/mL) reduced MPTP-mediated cytotoxicity of SH-SY5Y cells in vitro, and HYP [25 mg/(kg d)] alleviated MPTP-induced motor symptoms in vivo. HYP treatment reduced the contents of nitric oxide (NO), H2O2, and malondialdehyde (MDA), as well as the mitochondrial damage of dopaminergic neurons, both in vitro and in vivo. Meanwhile, HYP treatment elevated the levels of neurotrophic factors such as glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and recombinant cerebral dopamine neurotrophic factor in vivo, but not in vitro. Finally, Akt signaling was activated after the administration of HYP in MPP+/MPTP-induced dopaminergic neurodegeneration. However, the blockage of the Akt pathway with Akt inhibitor did not abolish the neuroprotective effect of HYP on DA neurons. These results showed that HYP protected the dopaminergic neurons from the MPP+- and MPTP-induced injuries, which did not rely on the Akt pathway.
Collapse
Affiliation(s)
- Xing-Jie Xu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Tao Pan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Xu Wang
- Department of Traditional Chinese Medicine, Shanxi Pharmaceutical Vocational College, 030031, Taiyuan, China
| | - Jie-Zhong Yu
- Department of Neurology, the First Affiliated Hospital, Shanxi Datong University, 037048, Datong, China
| | - Hai-Fei Zhang
- Department of Neurology, the First Affiliated Hospital, Shanxi Datong University, 037048, Datong, China
| | - Bao-Guo Xiao
- Huashan Hospital, Fudan University, 200025, Shanghai, China
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, 030006, Taiyuan, China
| | - Bo Zhang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
- Health Commission of Shanxi Province, 030001, Taiyuan, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
| |
Collapse
|
13
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Hao Wang,
| |
Collapse
|
14
|
Altered BDNF levels are associated with cognitive impairment in Parkinson's disease patients with depression. Parkinsonism Relat Disord 2022; 103:122-128. [DOI: 10.1016/j.parkreldis.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
|
15
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
16
|
Deng L, Chu Z, Li B, Liu P, Lei G, Yang L, Zhang L, Li S, Wang Y, Dang Y. BDNF-AAV has protective effects on morphine-induced conditioned place preference through BDNF, TrkB, and CREB concentration changes in the VTA and NAc. Neurosci Lett 2022; 782:136701. [PMID: 35653819 DOI: 10.1016/j.neulet.2022.136701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the neurotrophic factors that promotes the survival and protection of neurons in many disorders. The potential protective effect of BDNF and its mechanisms on morphine addiction are unclear. In this study, morphine-induced conditioned place preference (CPP) in mice was used to show the effect of BDNF on rewarding behavior. Western blot assays were used to determine the changes caused by BDNF, for example, changes in total BDNF, tropomyosin-related kinase receptor B (TrkB), and cAMP response element binding protein (CREB) in the ventral tegmental area (VTA) and nucleus accumbens (NAc). The results showed that the BDNF-adeno-associated viral vector (BDNF-AAV) injected in the VTA, attenuated morphine-induced CPP with synergistic changes in BDNF/TrkB/CREB concentrations in the VTA and NAc in the CPP acquisition and recurrence phases; however, the attenuation was lower in the extinction phase, with different changes in molecules downstream of the BDNF.
Collapse
Affiliation(s)
- Lisha Deng
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China; College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China
| | - Zheng Chu
- Department of Forensic Medicine, Xuzhou Medical University, Jiangsu, China
| | - Baijia Li
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China
| | - Peng Liu
- Department of Pharmacology and Toxicology, Institute of Basic Medicine Science, Xi'an Medical University, Shaanxi, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China
| | - Liu Yang
- Xi'an City Public Security Bureau Astronautics Branch, Shaanxi, China
| | - Leile Zhang
- Xi'an Center for Disease Control and Prevention, Shaanxi, China
| | - Shaofu Li
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China
| | - Yiming Wang
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China
| | - Yonghui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
17
|
Brain-Derived Neurotropic Factor in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10051143. [PMID: 35625880 PMCID: PMC9138678 DOI: 10.3390/biomedicines10051143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, neurodegenerative diseases cause a significant degree of disability and distress. Brain-derived neurotrophic factor (BDNF), primarily found in the brain, has a substantial role in the development and maintenance of various nerve roles and is associated with the family of neurotrophins, including neuronal growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). BDNF has affinity with tropomyosin receptor kinase B (TrKB), which is found in the brain in large amounts and is expressed in several cells. Several studies have shown that decrease in BDNF causes an imbalance in neuronal functioning and survival. Moreover, BDNF has several important roles, such as improving synaptic plasticity and contributing to long-lasting memory formation. BDNF has been linked to the pathology of the most common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. This review aims to describe recent efforts to understand the connection between the level of BDNF and neurodegenerative diseases. Several studies have shown that a high level of BDNF is associated with a lower risk for developing a neurodegenerative disease.
Collapse
|
18
|
Huang R, Gao Y, Chen J, Duan Q, He P, Zhang J, Huang H, Zhang Q, Ma G, Zhang Y, Nie K, Wang L. TGR5 agonist INT-777 alleviates inflammatory neurodegeneration in parkinson’s disease mouse model by modulating mitochondrial dynamics in microglia. Neuroscience 2022; 490:100-119. [DOI: 10.1016/j.neuroscience.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|
19
|
Chang E, Wang J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson's disease. Brain Behav 2021; 11:e2251. [PMID: 34132500 PMCID: PMC8413743 DOI: 10.1002/brb3.2251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative disorders that seriously impair the life quality and survival of patients. Herein, we aim to investigate the neuroprotective roles of brain-derived neurotrophic factor (BDNF) in PD mice and reveal the underlying mechanisms. BDNF overexpression was achieved via the injection of adeno-associated viruses (AAV) with BDNF gene. METHODS PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Tests of rotarod, pole, open field, and novel object recognition were conducted to evaluate the motor and cognitive functions of treated mice. RESULTS Mitochondrial impairment, mitochondrial respiratory chain enzymes, and tyrosine hydroxylase (TH)-positive dopaminergic neurons were detected to uncover the molecular mechanism. BDNF overexpression attenuated motor deficits and cognitive impairment in MPTP-induced PD mice. Mechanistically, BDNF mitigated mitochondrial impairment increased the activity of respiratory chain Complex I and Ⅱ+III, and finally alleviated TH-positive dopaminergic neuron loss in MPTP-induced PD mice. CONCLUSION This study highlights the potential of BDNF as a therapeutic candidate for the treatment of mitochondrial impairment-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- E Chang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| | - Jiongmei Wang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|