1
|
Aghababaei A, Arian R, Soltanipour A, Ashtari F, Rabbani H, Kafieh R. Discrimination of multiple sclerosis using scanning laser ophthalmoscopy images with autoencoder-based feature extraction. Mult Scler Relat Disord 2024; 88:105743. [PMID: 38945032 DOI: 10.1016/j.msard.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at a fixed position. METHODS We incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural networks (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k-nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP). RESULTS The custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC). CONCLUSIONS We utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.
Collapse
Affiliation(s)
- Ali Aghababaei
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Arian
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asieh Soltanipour
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Ashtari
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Raheleh Kafieh
- Department of Engineering, Durham University, South Road, Durham, UK.
| |
Collapse
|
2
|
Ge Y, Ming L, Xu D. Sevoflurane-induced cognitive effect on α7-nicotine receptor and M 1 acetylcholine receptor expression in the hippocampus of aged rats. Neurol Res 2024; 46:593-604. [PMID: 38747300 DOI: 10.1080/01616412.2024.2338031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sevoflurane treatment increases the incidence of postoperative cognitive dysfunction (POCD), and patients with POCD show a decline in cognitive abilities compared to preoperative levels. OBJECTIVES This study aimed to investigate whether the activation of α7 nicotinic acetylcholine receptor (α7nAChR) and the expression of M1 acetylcholine receptor (mAChR M1) in the hippocampus affects the cognitive function of aged rats. METHODS Forty-eight Sprague-Dawley (SD) rats of 1-week- and 12-months-old were divided into eight groups: four groups for α7nAChR and four groups for mAChR M1, respectively. All SD rats received 1.0-02% sevoflurane for α7nAChR and 1.0-02% sevoflurane for mAChR M1 for 2-6 h, respectively. The Y-maze test was used to assess the ability to learn and memory after receiving sevoflurane for 7 days at the same moment portion. RT-PCR was used to determine the expression of α7nAChR and mAChR M1 in the hippocampus of rats. RESULTS The α7nAChR mitigated the formation of sevoflurane-induced memory impairment by modulating the translocation of NR2B from the intracellular reservoir to the cell surface reservoir within the hippocampus. Next, sevoflurane-induced decline of cognitive function and significantly decreased mAChR M1 expression at mRNA levels. CONCLUSION α7nAChR regulates the trafficking of NR2B in the hippocampus of rats via the Src-family tyrosine kinase (SFK) pathway. This regulation is associated with cognitive deficits induced by sevoflurane in hippocampal development. Sevoflurane affects the cognitive function of rats by suppressing the mAChR M1 expression at mRNA levels in the hippocampus.
Collapse
Affiliation(s)
- Yuan Ge
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Ming
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dedong Xu
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Ulhaq ZS, Bittencourt GB, Soraya GV, Istifiani LA, Pamungkas SA, Ogino Y, Nurputra DK, Tse WKF. Association between glaucoma susceptibility with combined defects in mitochondrial oxidative phosphorylation and fatty acid beta oxidation. Mol Aspects Med 2024; 96:101238. [PMID: 38215610 DOI: 10.1016/j.mam.2023.101238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Anika, Singh S, Rimpi. Neuroprotective effects of Embelin in an ethidium bromide-induced multiple sclerosis in rats: Modulation of p38 MAPK signaling pathway. Int Immunopharmacol 2024; 129:111639. [PMID: 38335654 DOI: 10.1016/j.intimp.2024.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating inflammatory disease characterized by demyelination, varied remyelination conservation, and partial axonal retention in central nervous system (CNS) lesions. The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in the pathophysiology of MS. Embelin (EMB), derived from the Embelia ribes plant, possesses diverse biological activities, including anti-inflammatory properties. OBJECTIVE This study aimed to investigate the neuroprotective effects of EMB in an ethidium bromide (EB)-induced model of MS in Wistar rats. METHODS Wistar rats were randomly divided into five groups (n = 8). MS-like manifestations were induced by injecting EB (0.1 %/10 µl) into the intracerebropeduncle (ICP) region of the rat brain for seven consecutive days. EMB was administered at doses of 1.25, 2.5, and 5 mg/kg. Behavioral assessments, neuroinflammatory cytokine analysis like tumor necrosis factor-α, interleukin-1-β, interleukin-6 (TNF-α, IL-1β, IL-6), oxidative stress marker measurements malondialdehyde, reduced glutathione, superoxide dismutase (MDA, GSH, SOD), and nitrite (NO), Acetylcholinesterase enzyme (AchE), and neurotransmitter level analysis, dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) were conducted. RESULTS The study assessed behavioral, neurochemical, biochemical, and neuroinflammatory parameters, along with the modulation of p38 MAPK signaling. EMB administration significantly ameliorated neurological consequences induced by EB, improving motor coordination and gait abnormalities in rats. Furthermore, EMB effectively reduced neuroinflammatory cytokines (TNF-α, IL-1β, IL-6) and oxidative stress markers (AchE, SOD, MDA, GSH, nitrite). Notably, EMB exhibited a modulatory effect on neurotransmitter levels, increasing GABA, DA, and 5-HT, while reducing glutamate in EB-treated groups. CONCLUSION This study demonstrates the neuroprotective potential of EMB against the EB-induced model of MS in rats. EMB administration mitigated neurological impairments, attenuated neuroinflammation, alleviated oxidative stress, and restored neurotransmitter balance. These findings highlight the promise of EMB as a therapeutic candidate for MS treatment, providing insights into its potential mechanism of action involving the modulation of p38 MAPK signaling.
Collapse
Affiliation(s)
- Anika
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Rimpi
- Pharma Innovation Lab, Dept. of Pharmaceutical Sciences &Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India.
| |
Collapse
|
5
|
Zeng X, Zhang K, Liang M, Yu B, Zhang P, Mehmood A, Zhang H. NAD + affects differentially expressed genes- MBOAT2- SLC25A21- SOX6 in experimental autoimmune encephalomyelitis model. Int J Neurosci 2024:1-8. [PMID: 38315116 DOI: 10.1080/00207454.2024.2313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) plays a key role in neuroinflammation and neurodegeneration and provides anti-inflammatory and neuroprotective effects in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). AIM In this study, we aimed to investigate whether NAD+ affects differentially expressed genes (DEGs) in splenocytes of EAE mice to reveal candidate genes for the pathogenesis of MS. METHODS The EAE model was used to perform an intervention on NAD+ to investigate its potential as a protective agent in inflammation and demyelination. Transcriptome analysis of nerve tissue was carried out to gain better insights into NAD+ function. Effects of NAD+ on DEGs in the splenocytes of EAE mice were investigated to determine its anti-inflammatory effect. RESULTS NAD+ in EAE mice showed the clinical score was significantly improved (EAE 3.190 ± 0.473 vs. NAD+ 2.049 ± 0.715). DEGs (MBOAT2, SLC25A21, and SOX6) between the EAE and the EAE + NAD+ groups showed that SOX6 was significantly improved after NAD+ treatment compared with the EAE group, and other indicators were improved but did not reach statistical significance. NAD+ exhibited clinical scores in EAE mice, and key inflammation was ameliorated in EAE mice spleen after NAD+ intervention, while transcriptome analysis between EAE and EAE + NAD+ groups showed several DEGs in the underlying mechanism. CONCLUSION NAD+ on DEGs attenuates disease severity in EAE. Transcriptome analysis on nerve tissue reveals several protein targets in the underlying mechanisms. However, NAD+ does not significantly improve DEGs in the splenocytes of the EAE model.
Collapse
Affiliation(s)
- Xu Zeng
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Kexue Zhang
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ming Liang
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Bin Yu
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Hongtian Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Qiu X, Huang MN, Ping S. Genetic susceptibility and causal pathway analysis of eye disorders coexisting in multiple sclerosis. Front Immunol 2024; 15:1337528. [PMID: 38375484 PMCID: PMC10875133 DOI: 10.3389/fimmu.2024.1337528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction The comorbidity of optic neuritis with multiple sclerosis has been well recognized. However, the causal association between multiple sclerosis and optic neuritis, as well as other eye disorders, remains incompletely understood. To address these gaps, we investigated the genetically relationship between multiple sclerosis and eye disorders, and explored potential drugs. Methods In order to elucidate the genetic susceptibility and causal links between multiple sclerosis and eye disorders, we performed two-sample Mendelian randomization analyses to examine the causality between multiple sclerosis and eye disorders. Additionally, causal single-nucleotide polymorphisms were annotated and searched for expression quantitative trait loci data. Pathway enrichment analysis was performed to identify the possible mechanisms responsible for the eye disorders coexisting with multiple sclerosis. Potential therapeutic chemicals were also explored using the Cytoscape. Results Mendelian randomization analysis revealed that multiple sclerosis increased the incidence of optic neuritis while reducing the likelihood of concurrent of cataract and macular degeneration. Gene Ontology enrichment analysis implicated that lymphocyte proliferation, activation and antigen processing as potential contributors to the pathogenesis of eye disorders coexisting with multiple sclerosis. Furthermore, pharmaceutical agents traditionally employed for allograft rejection exhibited promising therapeutic potential for the eye disorders coexisting with multiple sclerosis. Discussion Multiple sclerosis genetically contributes to the development of optic neuritis while mitigating the concurrent occurrence of cataract and macular degeneration. Further research is needed to validate these findings and explore additional mechanisms underlying the comorbidity of multiple sclerosis and eye disorders.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mi Ni Huang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Suning Ping
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
9
|
Cujba L, Stan C, Samoila O, Drugan T, Benedec Cutas A, Nicula C. Identifying Optical Coherence Tomography Markers for Multiple Sclerosis Diagnosis and Management. Diagnostics (Basel) 2023; 13:2077. [PMID: 37370972 DOI: 10.3390/diagnostics13122077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a common neurological disease affecting the optic nerve, directly or indirectly, through transsynaptic axonal degeneration along the visual pathway. New ophthalmological tools, arguably the most important being optical coherence tomography (OCT), could prove paramount in redefining MS diagnoses and shaping their follow-up protocols, even when the optic nerve is not involved. METHODS A prospective clinical study was conducted. In total, 158 eyes from patients previously diagnosed with relapsing remitting MS (RRMS)-with or without optic neuritis (ON), clinically isolated syndrome (CIS) with or without ON, and healthy controls were included. Each patient underwent an ophthalmologic exam and OCT evaluation for both eyes (a posterior pole analysis (PPA) and the optic nerve head radial circle protocol (ONH-RC)). RESULTS The macular retinal thickness (the 4 × 4, respectively, 2 × 2 grid) and thickness of the peripapillary retinal nerve fiber layer (pRNFL) were investigated. Various layers of the retina were also compared. Our study observed significant pRNFL thinning in the RRMS eyes compared to the control group, the pRNFL atrophy being more severe in the RRMS-ON eyes than the RRMS-NON eyes. In the ON group, the macular analysis showed statistically significant changes in the RRMS-ON eyes when compared only to the CIS-ON eyes, regarding decreases in the inner plexiform layer (IPL) thickness and inner nuclear layer (INL) on the central 2 × 2 macular grid. The neurodegenerative process affected both the inner retina and pRNFL, with clinical damage appearing for the latter in the following order: CIS-NON, CIS-ON, RRMS-NON, and RRMS-ON. In the presence of optic neuritis, SMRR patients presented an increase in their outer retina thickness compared to CIS patients. CONCLUSIONS To differentiate the MS patients from the CIS patients, in the absence of optic neuritis, OCT Posterior Pole Analysis could be a useful tool when using a central 2 × 2 sectors macular grid. Retinal changes in MS seem to start from the fovea and spread to the posterior pole. Finally, MS could lead to alterations in both the inner and outer retina, along with pRNFL.
Collapse
Affiliation(s)
- Larisa Cujba
- Medical Doctoral School, University of Oradea, 410087 Oradea, Romania
| | - Cristina Stan
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ovidiu Samoila
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ancuta Benedec Cutas
- Department of Medical Informatics and Biostatistics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristina Nicula
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Mehmood A, Ali W, Song S, Din ZU, Guo RY, Shah W, Ilahi I, Yin B, Yan H, Zhang L, Khan M, Ali W, Zeb L, Safari H, Li B. Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis. Brain Behav 2021; 11:e2302. [PMID: 34520634 PMCID: PMC8553325 DOI: 10.1002/brb3.2302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
This study explores the use of optical coherence tomography (OCT) to monitor and diagnose multiple sclerosis (MS). The analysis of reduced total macular volume and peripapillary retinal nerve fiber layer thinning are shown. The severity of these defects increases as MS progresses, reflecting the progressive degeneration of nerve fibers and retinal ganglion cells. The OCT parameters are noninvasive, sensitive indicators that can be used to assess the progression of neurodegeneration and inflammation in MS.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, P. R. China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Liaoning Province, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Bowen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, P. R. China
| | - Hongjing Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Murad Khan
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Wajid Ali
- Green and Environmental Chemistry, Ecotoxicology and Ecology Laboratory, Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, P.R. China
| | - Hamidreza Safari
- Department of Immunology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|