1
|
Gafarov V, Gromova E, Shakhtshneider E, Gagulin I, Gafarova A. Association of the APOE Gene Polymorphism with Depression in White Adults in the WHO "MONICA-Psychosocial" Program. J Pers Med 2023; 13:1306. [PMID: 37763074 PMCID: PMC10532747 DOI: 10.3390/jpm13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The APOE gene polymorphism is associated with the risk of the development of several neurological disorders. The aim of the study was to investigate the association of the APOE gene polymorphism with depression in the white adult population aged 25-64 years in Novosibirsk (Western Siberia). The third screening of the WHO program "MONICA-psychosocial" was conducted in 1994-1995. In total, 403 men (the average age was 34 ± 0.4 years, the response was 71%) and 531 women (the average age was 35 ± 0.4 years, the response was 72%) of the open population of residents aged 25-64 years of the Oktyabrsky district of Novosibirsk were examined. The "MONICA-MOPSY" psychosocial questionnaire was used to assess depression. A high level of depression was found in 12.8% of the population: in 8.9% of men and in 15.8% of women. The frequencies of APOE gene polymorphism genotypes ε2/3, ε2/4, ε3/3, ε3/4, and ε4/4 were 14.9%, 3.1%, 61.6%, 17.5%, and 2.9%, respectively. Carrying the ε3/4 genotype of the APOE gene increased the odds of developing major depression by 2.167 times (95% CI 1.100-4.266) compared to carrying the ε3/3 genotype of the APOE gene in people without depression (χ2 = 5.120 df = 1 p = 0.024). Carriers of the ε4 allele were 2.089 times (95% CI 1.160-3.761) more likely to have a high level of depression than those without this allele and no depression (χ2 = 6.148 df = 1 p = 0.013), and 2.049 times (95% CI 1.117-3.758) more likely to have a moderate level of depression than those without this allele (χ2 = 5.470 df = 1 p < 0.019). The ε4 allele of the APOE gene is associated with a high level of depression.
Collapse
Affiliation(s)
- Valery Gafarov
- Institute of Internal and Preventive Medicine (IIPM)-Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
- Collaborative Laboratory of Epidemiology of Cardiovascular Diseases (CVD), 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
| | - Elena Gromova
- Institute of Internal and Preventive Medicine (IIPM)-Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
- Collaborative Laboratory of Epidemiology of Cardiovascular Diseases (CVD), 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
| | - Elena Shakhtshneider
- Institute of Internal and Preventive Medicine (IIPM)-Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
| | - Igor Gagulin
- Institute of Internal and Preventive Medicine (IIPM)-Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
- Collaborative Laboratory of Epidemiology of Cardiovascular Diseases (CVD), 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
| | - Almira Gafarova
- Institute of Internal and Preventive Medicine (IIPM)-Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
- Collaborative Laboratory of Epidemiology of Cardiovascular Diseases (CVD), 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia
| |
Collapse
|
2
|
Jiang Y, Zhou Y, Tan S, Xu C, Ma J. Role of posttranslational modifications in memory and cognitive impairments caused by neonatal sevoflurane exposure. Front Pharmacol 2023; 14:1113345. [PMID: 36992831 PMCID: PMC10040769 DOI: 10.3389/fphar.2023.1113345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
With the advancement of technology, increasingly many newborns are receiving general anesthesia at a young age for surgery, other interventions, or clinical assessment. Anesthetics cause neurotoxicity and apoptosis of nerve cells, leading to memory and cognitive impairments. The most frequently used anesthetic in infants is sevoflurane; however, it has the potential to be neurotoxic. A single, short bout of sevoflurane exposure has little impact on cognitive function, but prolonged or recurrent exposure to general anesthetics can impair memory and cognitive function. However, the mechanisms underlying this association remain unknown. Posttranslational modifications (PTMs), which can be described roughly as the regulation of gene expression, protein activity, and protein function, have sparked enormous interest in neuroscience. Posttranslational modifications are a critical mechanism mediating anesthesia-induced long-term modifications in gene transcription and protein functional deficits in memory and cognition in children, according to a growing body of studies in recent years. Based on these recent findings, our paper reviews the effects of sevoflurane on memory loss and cognitive impairment, discusses how posttranslational modifications mechanisms can contribute to sevoflurane-induced neurotoxicity, and provides new insights into the prevention of sevoflurane-induced memory and cognitive impairments.
Collapse
Affiliation(s)
- Yongliang Jiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Siwen Tan
- Outpatient Department, West China Hospital of Sichuan University, Chengdu, China
| | - Chongxi Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Junpeng Ma,
| |
Collapse
|
3
|
Feng J, Lin H, Zhao Y, Yang Y, Zhuang X, Yu Y, Yu Y. Tandem mass tag-based quantitative proteomic analysis of effects of multiple sevoflurane exposures on the cerebral cortex of neonatal and adult mice. Front Neurol 2022; 13:1056947. [PMID: 36582614 PMCID: PMC9792844 DOI: 10.3389/fneur.2022.1056947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Sevoflurane is the most commonly used general anesthetic in pediatric surgery, but it has the potential to be neurotoxic. Previous research found that long-term or multiple sevoflurane exposures could cause cognitive deficits in newborn mice but not adult mice, whereas short-term or single inhalations had little effect on cognitive function at both ages. The mechanisms behind these effects, however, are unclear. Methods In the current study, 6- and 60-day-old C57bl mice in the sevoflurane groups were given 3% sevoflurane plus 60% oxygen for three consecutive days, each lasting 2 hours, while those in the control group only got 60% oxygen. The cortex tissues were harvested on the 8th or 62nd day. The tandem mass tags (TMT)pro-based quantitative proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, Golgi staining, and western blotting analysis were applied to analyze the influences of multiple sevoflurane anesthesia on the cerebral cortex in mice with various ages. The Morris water maze (MWM) test was performed from postnatal day (P)30 to P36 or P84 to P90 after control or multiple sevoflurane treatment. Sevoflurane anesthesia affected spatial learning and memory and diminished dendritic spines primarily in newborn mice, whereas mature animals exhibited no significant alterations. Results A total of 6247 proteins were measured using the combined quantitative proteomics methods of TMTpro-labeled and LC-MS/MS, 443 of which were associated to the age-dependent neurotoxic mechanism of repeated sevoflurane anesthesia. Furthermore, western blotting research revealed that sevoflurane-induced brain damage in newborn mice may be mediated by increasing the levels of protein expression of CHGB, PTEN, MAP2c, or decreasing the level of SOD2 protein expression. Conclusion Our findings would help to further the mechanistic study of age-dependent anesthetic neurotoxicity and contribute to seek for effective protection in the developing brain under general anesthesia.
Collapse
Affiliation(s)
- Jingyu Feng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Hua Lin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yue Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Xiaoli Zhuang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China,*Correspondence: Yang Yu
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Anesthesiology, Tianjin, China,Yonghao Yu
| |
Collapse
|
4
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|
5
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|