1
|
Zhang Y, He Z, Hu Q, Liu H, Wen R, Ru N, Yu J, Lv S, Tao R. MiR-3571 modulates traumatic brain injury by regulating the PI3K/AKT signaling pathway via Fbxo31. Cell Biochem Biophys 2024; 82:3629-3643. [PMID: 39080190 DOI: 10.1007/s12013-024-01452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
To investigate the effect of miR-3571 on traumatic brain injury (TBI) via the regulation of neuronal apoptosis through F-box-only protein 31/phosphoinositide 3-kinase/protein kinase B (Fbxo31/PI3K/AKT). We established TBI rat and cell models. Hematoxylin‒eosin (HE) and Nissl staining were used to observe brain injury and the number of Nissl bodies, respectively. Cell proliferation and apoptosis were assessed by 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and flow cytometry. Gene and protein expression was measured via reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). In this study, miR-3571 was highly expressed in TBI models. Inhibition of miR-3571 expression can suppress autophagy, reduce the expression of proinflammatory cytokines, and reduce neuronal apoptosis, thus alleviating the pathological conditions of tissue congestion, edema and structural damage after TBI. These experiments demonstrated that miR-3571 could target and regulate the level of Fbxo31. Knockdown of Fbxo31 weakened the remission effect of the miR-3571 inhibitor on TBI and promoted neurological damage; moreover, overexpression of Fbxo31 enhanced the protective effect on neural function, whereas the PI3K/AKT pathway inhibitor LY294002 increased the damage caused by miR-3571 on neural function and weakened the protective effect of Fbxo31. In conclusion, miR-3571 regulates the PI3K/AKT signaling pathway by reducing Fbxo31 expression, promotes neuronal apoptosis and exacerbates TBI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Zongying He
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Qiongfang Hu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Huali Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rongai Wen
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Na Ru
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Jinghua Yu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Shaokun Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rui Tao
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China.
| |
Collapse
|
2
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Ghaderi S, Gholipour P, Safari S, Sadati SM, Brooshghalan SE, Sohrabi R, Rashidi K, Komaki A, Salehi I, Sarihi A, Zarei M, Shahidi S, Rashno M. Uncovering the protective potential of vanillic acid against traumatic brain injury-induced cognitive decline in male rats: Insights into underlying mechanisms. Biomed Pharmacother 2024; 179:117405. [PMID: 39236478 DOI: 10.1016/j.biopha.2024.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and there is still no specific drug available to treat cognitive deficits in survivors. Vanillic acid (VA), a bioactive phenolic compound, has shown protective effects in various models of neurodegeneration; however, its impact on TBI outcomes remains elusive. Therefore, this study aimed to elucidate the possible role of VA in ameliorating TBI-induced cognitive decline and to reveal the mechanisms involved. TBI was induced using the Marmarou impact acceleration model to deliver an impact force of 300 g, and treatment with VA (50 mg/kg; P.O.) was initiated 30 minutes post-TBI. The cognitive performance, hippocampal long-term potentiation (LTP), oxidative stress markers, neurological function, cerebral edema, and morphological changes were assessed at scheduled points in time. TBI resulted in cognitive decline in the passive avoidance task, impaired LTP in the perforant path-dentate gyrus (PP-DG) pathway, increased hippocampal oxidative stress, cerebral edema, neurological deficits, and neuronal loss in the rat hippocampus. In contrast, acute VA administration mitigated all the aforementioned TBI outcomes. The data suggest that reducing synaptic plasticity impairment, regulating oxidative and antioxidant defense, alleviating cerebral edema, and preventing neuronal loss by VA can be at least partially attributed to its protection against TBI-induced cognitive decline.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mahdi Sadati
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Sohrabi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran.
| |
Collapse
|
4
|
Balleste AF, Alvarez JC, Placeres-Uray F, Mastromatteo-Alberga P, Torres MD, Dallera CA, Dietrich WD, Parry TJ, Verdoorn TA, Billing CB, Buller B, Atkins CM. Improvement in edema and cognitive recovery after moderate traumatic brain injury with the neurosteroid prodrug NTS-104. Neurotherapeutics 2024; 21:e00456. [PMID: 39366874 PMCID: PMC11585901 DOI: 10.1016/j.neurot.2024.e00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Neuroactive steroids reduce mortality, decrease edema, and improve functional outcomes in preclinical and clinical traumatic brain injury (TBI) studies. In this study, we tested the efficacy of two related novel neuroactive steroids, NTS-104 and NTS-105, in a rat model of TBI. NTS-104 is a water-soluble prodrug of NTS-105, a partial progesterone receptor agonist. To investigate the effects of NTS-104 on TBI recovery, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion injury or sham surgery and were treated with vehicle or NTS-104 (10 mg/kg, intramuscularly) at 4, 10, 24, and 48 h post-TBI. The therapeutic time window was also assessed using the neuroactive steroid NTS-105 (3 mg/kg, intramuscularly). Edema in the parietal cortex and hippocampus, measured at 3 days post-injury (DPI), was reduced by NTS-104 and NTS-105. NTS-105 was effective in reducing edema when given at 4, 10, or 24 h post-injury. Sensorimotor deficits in the cylinder test at 3 DPI were ameliorated by NTS-104 and NTS-105 treatment. Cognitive recovery, assessed with cue and contextual fear conditioning and retention of the water maze task assessed subacutely 1-3 weeks post-injury, also improved with NTS-104 treatment. Cortical and hippocampal atrophy at 22 DPI did not improve, indicating that NTS-104/NTS-105 may promote post-TBI cognitive recovery by controlling edema and other processes. These results demonstrate that NTS-104/NTS-105 is a promising therapeutic approach to improve motor and cognitive recovery after moderate TBI.
Collapse
Affiliation(s)
- Alyssa F Balleste
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Jacqueline C Alvarez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Fabiola Placeres-Uray
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Patrizzia Mastromatteo-Alberga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Maria Dominguez Torres
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Carlos A Dallera
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | | | | | | | | | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA.
| |
Collapse
|
5
|
Guangliang H, Tao W, Danxin W, Lei L, Ye M. Critical Knowledge Gaps and Future Priorities Regarding the Intestinal Barrier Damage After Traumatic Brain Injury. World Neurosurg 2024; 188:136-149. [PMID: 38789030 DOI: 10.1016/j.wneu.2024.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The analysis aims to provide a comprehensive understanding of the current landscape of research on the Intestinal barrier damage after traumatic brain injury (TBI), elucidate specific mechanisms, and address knowledge gaps to help guide the development of targeted therapeutic interventions and improve outcomes for individuals with TBI. A total of 2756 relevant publications by 13,778 authors affiliated within 3198 institutions in 79 countries were retrieved from the Web of Science. These publications have been indexed by 1139 journals and cited 158, 525 references. The most productive author in this field was Sikiric P, and the University of Pittsburgh was identified as the most influential institution. The United States was found to be the leading country in terms of article output and held a dominant position in this field. The International Journal of Molecular Sciences was identified as a major source of publications in this area. In terms of collaboration, the cooperation between the United States and China was found to be the most extensive among countries, institutions, and authors, indicating a high level of influence in this field. Keyword co-occurrence network analysis revealed several hotspots in this field, including the microbiome-gut-brain axis, endoplasmic reticulum stress, cellular autophagy, ischemia-reperfusion, tight junctions, and intestinal permeability. The analysis of keyword citation bursts suggested that ecological imbalance and gut microbiota may be the forefront of future research. The findings of this study can serve as a reference and guiding perspective for future research in this field.
Collapse
Affiliation(s)
- He Guangliang
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; HeJiang Affiliated Hospital of Southwest Medical University, Department of Respiratory and Critical Care Medicine, Luzhou, China
| | - Wang Tao
- Hainan Medical University, International School of Nursing, Haikou, China; Foshan University, Medical College, Guangdong, China
| | - Wang Danxin
- The First Affiliated Hospital of Hainan Medical University, Nursing Department, Haikou, China
| | - Liu Lei
- The First Affiliated Hospital of Hainan Medical University, Respiratory Medicine Department, Haikou, China
| | - Min Ye
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; Hainan Medical University, International School of Nursing, Haikou, China.
| |
Collapse
|
6
|
Khaksari M, Shahryari M, Raji-Amirhasani A, Soltani Z, Bibak B, Keshavarzi Z, Shakeri F. Aloe vera Leaf Extract Reduced BBB Permeability and Improved Neurological Results after Traumatic Brain Injury: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5586814. [PMID: 39040520 PMCID: PMC11262876 DOI: 10.1155/2024/5586814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/24/2024]
Abstract
Introduction Recognizing the importance of medicinal plants and the absence of specific medications for traumatic brain injury (TBI) treatment, this study was conducted to evaluate the effects of an aqueous extract of Aloe vera on oxidative stress, blood-brain barrier (BBB) permeability, and neurological scores following TBI. Materials and Methods Adult male rats were categorized into five groups: sham, TBI, vehicle, low-dose Aloe vera (LA), and high-dose Aloe vera (HA). We induced diffuse TBI using the Marmaro model and administered the aqueous Aloe vera leaf extract, as well as vehicle, via intraperitoneal injection half an hour after TBI. Neurological outcomes were assessed both before and several hours after TBI. Additionally, oxidative stress factors were measured 24 hr after TBI, and Evans blue content (a BBB permeability index) was determined 5 hr after TBI in both serum and brain. Results Both LA and HA reduced the increase in BBB permeability after TBI, with HA having a more pronounced effect than LA. Both Aloe vera doses decreased brain MDA levels, increased brain TAC, and lowered both serum and brain PC levels. The impact of Aloe vera on brain oxidative parameters was more significant than on serum. HA also counteracted the declining effects of TBI on neurological outcomes at 4 and 24 hr post-TBI. Conclusion This study suggests that Aloe vera extract may reduce BBB permeability and improve neurological outcomes after TBI by decreasing oxidative factors and increasing antioxidant factors.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Shahryari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of PhysiologyNeuroscience Research CenterMedical FacultyGolestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical Sciences, Kerman, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
7
|
Amirkhosravi L, Khaksari M, Sanjari M, Khorasani P. The nongenomic neuroprotective effects of estrogen, E2-BSA, and G1 following traumatic brain injury: PI3K/Akt and histopathological study. Horm Mol Biol Clin Investig 2024; 45:1-15. [PMID: 38507353 DOI: 10.1515/hmbci-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Studies suggest that both genomic and nongenomic pathways are involved in mediating the salutary effects of steroids following traumatic brain injury (TBI). This study investigated the nongenomic effects of 17β-estradiol (E2) mediated by the PI3K/p-Akt pathway after TBI. METHODS Ovariectomized rats were apportioned to E2, E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicles were injected before the induction of TBI and injection of drugs. Diffuse TBI was induced by the Marmarou model. Evans blue (EBC, 5 h), brain water contents (BWC), histopathological changes, and brain PI3K and p-Akt protein expressions were measured 24 h after TBI. The veterinary comma scale (VCS) was assessed before and at different times after TBI. RESULTS The results showed a reduction in BWC and EBC and increased VCS in the E2, E2-BSA, and G1 groups. Also, E2, E2-BSA, and G1 reduced brain edema, inflammation, and apoptosis. The ICI and G15 inhibited the beneficial effects of E2, E2-BSA, and G1 on these parameters. All drugs, following TBI, prevented the reduction of brain PI3K/p-Akt expression. The individual or combined use of ICI and G15 eliminated the beneficial effects of E2, E2-BSA, and G1 on PI3K/p-Akt expressions. CONCLUSIONS These findings indicated that PI3K/p-Akt pathway plays a critical role in mediating the salutary effects of estradiol on histopathological changes and neurological outcomes following TBI, suggesting that GPER and classic ERs are involved in regulating the expression of PI3K/p-Akt.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, 48463 Kerman University of Medical Sciences , Kerman, Iran
| | - Mojgan Sanjari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Khorasani
- Pathology and Stem Cell Research Center, 48463 Kerman University of Medical Sciences , Kerman, Iran
| |
Collapse
|