1
|
Sarosiak A, Jędrychowska J, Oziębło D, Gan NS, Bałdyga N, Leja ML, Węgierski T, Cruz IA, Raible DW, Skarżyński H, Tylzanowski P, Korzh V, Ołdak M. Zebrafish in-vivo study reveals deleterious activity of human TBC1D24 genetic variants linked with autosomal dominant hearing loss. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167598. [PMID: 39586506 DOI: 10.1016/j.bbadis.2024.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/15/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Hearing loss is a common sensory impairment with a heterogeneous genetic etiology. Genetic variants in the TBC1D24 gene have recently emerged as an important cause of the non-syndromic autosomal dominant hearing loss (ADHL). However, the molecular mechanism behind the TBC1D24-associated ADHL is unknown. Using a zebrafish model, we investigated involvement of TBC1D24 in hearing and the functional effects of the associated ADHL-causing genetic variants. We show that the morpholino-mediated knock-down of Tbc1d24 resulted in defective ear kinocilia structure and reduced locomotor activity of the embryos. The observed phenotypes were rescued by a wild-type TBC1D24 mRNA but not by a mutant mRNA carrying the ADHL-causing variant c.553G>A (p.Asp185Asn), supporting its pathogenic potential. CRISPR-Cas9-mediated knock-out of tbc1d24 led to mechanosensory deficiency of lateral line neuromasts. Overexpression of TBC1D24 mRNA resulted in developmental abnormalities associated with ciliary dysfunction and mesendodermal mispatterning. We observed that the ADHL-causing TBC1D24 variants: c.553G>A (p.Asp185Asn); c.1460A>T (p.His487Leu), c.1461C>G (p.His487Gln) or a novel variant c.905T>G (p.Leu302Arg) alleviated the effect of overexpression, indicating that these variants disrupt the TBC1D24 function. Furthermore, the zebrafish phenotypes correspond to the severity of ADHL. Specific changes in ear structures upon TBC1D24 overexpression further highlighted its tissue-specific role in ciliary function and inner ear development. Our findings provide functional evidence for the pathogenic potential of the ADHL-causing TBC1D24 variants and lead to new insights into the function of TBC1D24 in cilia morphogenesis.
Collapse
Affiliation(s)
- A Sarosiak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - J Jędrychowska
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland; International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - D Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - N S Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland; Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - N Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland; Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - M L Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - T Węgierski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - I A Cruz
- Department of Biological Structure, University of Washington School of Medicine, Seattle, USA
| | - D W Raible
- Department of Biological Structure, University of Washington School of Medicine, Seattle, USA; Department of Otolaryngology-HNS, University of Washington School of Medicine, Seattle, USA
| | - H Skarżyński
- Otorhinolaryngology Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - P Tylzanowski
- Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Poland; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - V Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - M Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland; Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Villavicencio Gonzalez E, Dhindsa RS. Studying ultra-rare variants in STX1A uncovers a novel neurodevelopmental disorder. Eur J Hum Genet 2023; 31:973-974. [PMID: 37029317 PMCID: PMC10474260 DOI: 10.1038/s41431-023-01348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Affiliation(s)
- Esmeralda Villavicencio Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurologic Research Institute at Texas Children's Hospital, Houston, TX, USA.
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurologic Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Luppe J, Sticht H, Lecoquierre F, Goldenberg A, Gorman KM, Molloy B, Agolini E, Novelli A, Briuglia S, Kuismin O, Marcelis C, Vitobello A, Denommé-Pichon AS, Julia S, Lemke JR, Abou Jamra R, Platzer K. Heterozygous and homozygous variants in STX1A cause a neurodevelopmental disorder with or without epilepsy. Eur J Hum Genet 2023; 31:345-352. [PMID: 36564538 PMCID: PMC9995539 DOI: 10.1038/s41431-022-01269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies.
Collapse
Affiliation(s)
- Johannes Luppe
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Outi Kuismin
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Antonio Vitobello
- Inserm UMR1231 GAD, University of Burgundy-Franche Comté, Dijon, France
| | | | - Sophie Julia
- Federative Institute of Biology, CHU de Toulouse, Toulouse, France
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
4
|
Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome. Mol Neurobiol 2022; 59:3159-3169. [DOI: 10.1007/s12035-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
5
|
Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, Nicotera AG, Di Rosa G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front Neurol 2022; 13:826211. [PMID: 35350397 PMCID: PMC8957959 DOI: 10.3389/fneur.2022.826211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
The proper connection between the pre- and post-synaptic nervous cells depends on any element constituting the synapse: the pre- and post-synaptic membranes, the synaptic cleft, and the surrounding glial cells and extracellular matrix. An alteration of the mechanisms regulating the physiological synergy among these synaptic components is defined as “synaptopathy.” Mutations in the genes encoding for proteins involved in neuronal transmission are associated with several neuropsychiatric disorders, but only some of them are associated with Developmental and Epileptic Encephalopathies (DEEs). These conditions include a heterogeneous group of epilepsy syndromes associated with cognitive disturbances/intellectual disability, autistic features, and movement disorders. This review aims to elucidate the pathogenesis of these conditions, focusing on mechanisms affecting the neuronal pre-synaptic terminal and its role in the onset of DEEs, including potential therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- *Correspondence: Vincenzo Salpietro
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Rubio C, Taddei E, Acosta J, Custodio V, Paz C. Neuronal Excitability in Epileptogenic Zones Regulated by the Wnt/ Β-Catenin Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:2-11. [PMID: 31987027 DOI: 10.2174/1871527319666200120143133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is a neurological disorder that involves abnormal and recurrent neuronal discharges, producing epileptic seizures. Recently, it has been proposed that the Wnt signaling pathway is essential for the central nervous system development and function because it modulates important processes such as hippocampal neurogenesis, synaptic clefting, and mitochondrial regulation. Wnt/β- catenin signaling regulates changes induced by epileptic seizures, including neuronal death. Several genetic studies associate Wnt/β-catenin signaling with neuronal excitability and epileptic activity. Mutations and chromosomal defects underlying syndromic or inherited epileptic seizures have been identified. However, genetic factors underlying the susceptibility of an individual to develop epileptic seizures have not been fully studied yet. In this review, we describe the genes involved in neuronal excitability in epileptogenic zones dependent on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Elisa Taddei
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Jorge Acosta
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Carlos Paz
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| |
Collapse
|
7
|
Clinical Ketosis-Associated Alteration of Gene Expression in Holstein Cows. Genes (Basel) 2020; 11:genes11020219. [PMID: 32093082 PMCID: PMC7073836 DOI: 10.3390/genes11020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Ketosis is one of the most prevalent transition metabolic disorders in dairy cows, and has been intrinsically influenced by both genetic and nutritional factors. However, altered gene expression with respective to dairy cow ketosis has not been addressed yet, especially at the genome-wide level. In this study, we recruited nine Holsteins diagnosed with clinical ketosis and ten healthy controls, for which whole blood samples were collected at both prepartum and postpartum. Four groups of blood samples were defined: from cows with ketosis at prepartum (PCK, N = 9) and postpartum (CK, N = 9), respectively, and controls at prepartum (PHC, N = 10) and postpartum (HC, N = 10). RNA-Seq approach was used for investigating gene expression, by which a total of 27,233 genes were quantified with four billion high-quality reads. Subsequently, we revealed 75 and four differentially expressed genes (DEGs) between sick and control cows at postpartum and prepartum, respectively, which indicated that sick and control cows had similar gene expression patterns at prepartum. Meanwhile, there were 95 DEGs between postpartum and prepartum for sick cows, which showed depressed changes of gene expression during this transition period in comparison with healthy cows (428 DEGs). Functional analyses revealed the associated DEGs with ketosis were mainly involved in biological stress response, ion homeostasis, AA metabolism, energy signaling, and disease related pathways. Finally, we proposed that the expression level of STX1A would be potentially used as a new biomarker because it was the only gene that was highly expressed in sick cows at both prepartum and postpartum. These results could significantly help us to understand the underlying molecular mechanisms for incidence and progression of ketosis in dairy cows.
Collapse
|
8
|
Wenlan L, Zhongyuan X, Shaoqing L, Liying Z, Bo Z, Min L. MiR-34a-5p mediates sevoflurane preconditioning induced inhibition of hypoxia/reoxygenation injury through STX1A in cardiomyocytes. Biomed Pharmacother 2018; 102:153-159. [PMID: 29554593 DOI: 10.1016/j.biopha.2018.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
Anesthetic preconditioning is a cellular protective approach whereby exposure to a volatile anesthetic renders cardio injury. Sevoflurane preconditioning has been shown to exhibit cardio protective effect on hypoxia/reoxygenation (H/R) injury, but the underlying mechanism is unclear. Syntaxin 1A (STX1A), an important regulator in cardio disease, was predicted to be the target gene of microRNA-34a-5p (miR-34a-5p). The current research was designed to delineate the role of miR-34a-5p in regulating sevoflurane preconditioning in cardiomyocytes injury. In this study, the results demonstrated that the expression of STX1A was significantly increased, while miR-34a-5p was dramatically decreased in sev-preconditioning H9c2 cells as compared with cells only under H/R stimulation. Moreover, miR-34a-5p regulated the protective effect of sev-preconditioning in injured H9c2 cells by mediating cell proliferation and cell apoptosis. Additionally, the luciferase report confirmed the targeting reaction between STX1A and miR-34a-5p. Taken together, our study suggested that miR-34a-5p regulated sev-preconditioning induced inhibition of hypoxia/reoxygenation injury through mediating STX1A, provided a potential therapeutic target for anesthetic protection in cardio disease.
Collapse
Affiliation(s)
- Li Wenlan
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xia Zhongyuan
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Lei Shaoqing
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhan Liying
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhao Bo
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Liu Min
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
9
|
Baghel R, Grover S, Kaur H, Jajodia A, Parween S, Sinha J, Srivastava A, Srivastava AK, Bala K, Chandna P, Kushwaha S, Agarwal R, Kukreti R. Synergistic association of STX1A and VAMP2 with cryptogenic epilepsy in North Indian population. Brain Behav 2016; 6:e00490. [PMID: 27458546 PMCID: PMC4951625 DOI: 10.1002/brb3.490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION "Common epilepsies", merely explored for genetics are the most frequent, nonfamilial, sporadic cases in hospitals. Because of their much debated molecular pathology, there is a need to focus on other neuronal pathways including the existing ion channels. METHODS For this study, a total of 214 epilepsy cases of North Indian ethnicity comprising 59.81% generalized, 40.19% focal seizures, and based on epilepsy types, 17.29% idiopathic, 37.38% cryptogenic, and 45.33% symptomatic were enrolled. Additionally, 170 unrelated healthy individuals were also enrolled. Here, we hypothesize the involvement of epilepsy pathophysiology genes, that is, synaptic vesicle cycle, SVC genes (presynapse), ion channels and their functionally related genes (postsynapse). An interactive analysis was initially performed in SVC genes using multifactor dimensionality reduction (MDR). Further, in order to understand the influence of ion channels and their functionally related genes, their interaction analysis with SVC genes was also performed. RESULTS A significant interactive two-locus model of STX1A_rs4363087|VAMP2_rs2278637 (presynaptic genes) was observed among SVC variants in all epilepsy cases (P 1000-value = 0.054; CVC = 9/10; OR = 2.86, 95%CI = 1.88-4.35). Further, subgroup analysis revealed stronger interaction for the same model in cryptogenic epilepsy patients only (P 1000-value = 0.012; CVC = 10/10; OR = 4.59, 95%CI = 2.57-8.22). However, interactive analysis of presynaptic and postsynaptic genes did not show any significant association. CONCLUSIONS Significant synergistic interaction of SVC genes revealed the possible functional relatedness of presynapse with pathophysiology of cryptogenic epilepsy. Further, to establish the clinical utility of the results, replication in a large and similar phenotypic group of patients is warranted.
Collapse
Affiliation(s)
- Ruchi Baghel
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Sandeep Grover
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India; Division of Pneumonology-Immunology Department of Paediatrics Charité University Medical Centre Berlin Germany
| | - Harpreet Kaur
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Ajay Jajodia
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Shama Parween
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Juhi Sinha
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Ankit Srivastava
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Achal Kumar Srivastava
- Neurology Department Neuroscience Centre All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Kiran Bala
- Institute of Human Behavior & Allied Sciences (IHBAS) Dilshad Garden Delhi 110 095 India
| | | | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS) Dilshad Garden Delhi 110 095 India
| | - Rachna Agarwal
- Institute of Human Behavior & Allied Sciences (IHBAS) Dilshad Garden Delhi 110 095 India
| | - Ritushree Kukreti
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| |
Collapse
|