1
|
Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med 2024; 5:101756. [PMID: 39366385 PMCID: PMC11513853 DOI: 10.1016/j.xcrm.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Collapse
Affiliation(s)
- Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Targets 2023; 27:665-678. [PMID: 37574713 PMCID: PMC10530032 DOI: 10.1080/14728222.2023.2247563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
3
|
Zhang D, Ma L, Tan X, Deng W, Wen S, Li Y, Qin B, Cao S, Yu T. Intradermal miR-16-5p targets Akt3 and reduces RTX-induced postherpetic neuralgia-mimic pain in mice. Eur J Pharmacol 2023; 946:175665. [PMID: 36940911 DOI: 10.1016/j.ejphar.2023.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The molecular mechanisms of refractory pain in postherpetic neuralgia (PHN) patients are not fully understood. PHN may be related to skin abnormality after herpes zoster induced skin lesions. We previously reported 317 differentially expressed microRNAs (miRNAs) in PHN skin compared with the contralateral normal mirror skin. In this study, 19 differential miRNAs were selected and the expression was validated in other 12 PHN patients. The expression levels of miR-16-5p, miR-20a-5p, miR-505-5p, miR-3664-3p, miR-4714-3p and let-7a-5p are lower in PHN skin, which is the same as those in microarray experiment. To evaluate the effects of cutaneous miRNA on PHN, the expression of candidate miRNAs is further observed in resiniferatoxin (RTX) induced PHN-mimic mice model. In the plantar skin of RTX mice, miR-16-5p and let-7a-5p are downregulated, with the same expression trend of PHN patients. In addition, intraplantar injection of agomir-16-5p reduced mechanical hyperalgesia, and improved thermal hypoalgesia in RTX mice. Furthermore, agomir-16-5p down-regulated the expression levels of Akt3, which is the target gene of agomir-16-5p. These results suggest that intraplantar miR-16-5p may alleviate RTX induced PHN-mimic pain by inhibiting the expression of Akt3 in the skin.
Collapse
Affiliation(s)
- Dexin Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lulin Ma
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Wen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Bangyong Qin
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
4
|
Cao S, Zhang D, Yuan J, Liu C, Zhou W, Zhang L, Yu S, Qin B, Li Y, Deng W. MicroRNA And Circular RNA Expression In Affected Skin Of Patients With Postherpetic Neuralgia. J Pain Res 2019; 12:2905-2913. [PMID: 31695480 PMCID: PMC6802488 DOI: 10.2147/jpr.s221615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanisms of postherpetic neuralgia (PHN) are still not clear. Transcripts such as microRNA (miRNA) and circular RNA (circRNA) in the affected skin may take part in the initiation and development of this neuropathic pain; however, their expression profiles in skins of PHN patients have not been reported. The PHN affected skin and the mirror skin were collected and subjected to miRNA and circRNA microarray, and expression profiles were comparatively analyzed. There were 317 differently expressed miRNAs in PHN affected skin compared with mirror skin (fold change ≥2.0), and 13 of them showed fold change >10 in the PHN skin. Only one circRNA, hsa_circRNA_405463 showed fold change >2 in PHN skin, however, 31 circRNAs with fold change ≥1.5. To evaluate functions of differential miRNAs, their target mRNAs were predicted and bioinformatics analyses including gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway were conducted. Target mRNAs significantly (P<0.05) enriched in 85 pathways, such as FoxO, AMPK, MAPK and pathway. These data reported for the first time that miRNA and circRNA differentially expressed in the PHN skin and these transcripts with abnormal expression could be potential targets to treat PHN.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Dexin Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Wenjing Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Bangyong Qin
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Ying Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| |
Collapse
|
5
|
Zhang J, Yin J, Chen X, Mao X, Xu J, Cheng R, Wu J. Down-regulation of miR-140-3p can alleviate neonatal repetitive pain in rats via inhibiting TGF-β3. Biochem Biophys Res Commun 2019; 515:627-635. [DOI: 10.1016/j.bbrc.2019.05.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
|
6
|
He YT, Duan XL, Guo Z, Li HL, Suo ZW, Yang X, Zhang MY, Hu XD. A synthetic peptide disturbing GluN2A/SHP1 interaction in dorsal root ganglion attenuated pathological pain. Eur J Pharmacol 2019; 854:62-69. [PMID: 30951721 DOI: 10.1016/j.ejphar.2019.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Src Homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) interacts specifically with GluN2A subunit of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors in spinal cord dorsal horn. This molecular interaction is involved in the development of GluN2A-dependent spinal sensitization of nociceptive behaviors. Intrathecal application of a GluN2A-derived polypeptide (short for pep-GluN2A) has been shown to disturb spinal GluN2A/SHP1 interaction and inhibit inflammatory pain. Here we found that SHP1 was also located at dorsal root ganglion (DRG) neurons and formed complexes with GluN2A subunit. Peripheral inflammation activated SHP1 in DRG neurons, which promoted GluN2A tyrosine phosphorylation. The SHP1 binding to GluN2A facilitated the glutamate release from primary afferent fibers and exaggerated nociceptive synaptic transmission onto postsynaptic spinal cord neurons. Our data showed that intradermal application of pep-GluN2A disrupted GluN2A/SHP1 interaction in DRG neurons, attenuated the ability of GluN2A subunit-containing NMDA receptors to regulate the presynaptic glutamate release and more importantly, alleviated the pain hypersensitivity caused by carrageenan, complete Freund's adjuvant and formalin. The neuropathic pain induced by spared nerve injury was also ameliorated by intradermal pep-GluN2A application. These data suggested that disruption of GluN2A/SHP1 interaction in DRG neurons generated an effective analgesic action against pathological pain.
Collapse
Affiliation(s)
- Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Meng-Yuan Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
7
|
Huang LE, Guo SH, Thitiseranee L, Yang Y, Zhou YF, Yao YX. N-methyl D-aspartate receptor subtype 2B antagonist, Ro 25-6981, attenuates neuropathic pain by inhibiting postsynaptic density 95 expression. Sci Rep 2018; 8:7848. [PMID: 29777135 PMCID: PMC5959906 DOI: 10.1038/s41598-018-26209-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Postsynaptic density-95 (PSD-95) is a synaptic scaffolding protein that plays a crucial role in the development of neuropathic pain. However, the underlying mechanism remains unclear. To address the role of PSD-95 in N-methyl-D-aspartate receptor subtype 2B (NR2B) -mediated chronic pain, we investigated the relationship between PSD-95 activation and NR2B function in the spinal cord, by using a rat model of sciatic nerve chronic constriction injury (CCI). We demonstrate that the expression levels of total PSD-95 and cAMP response element binding protein (CREB), as well as phosphorylated NR2B, PSD-95, and CREB, in the spinal dorsal horn, and the interaction of NR2B with PSD-95 were increased in the CCI animals. Intrathecal injection of the selective NR2B antagonist Ro 25-6981 increased paw withdrawal latency, in a thermal pain assessment test. Moreover, repeated treatment with Ro 25-6981 markedly attenuated the thermal hypersensitivity, and inhibited the CCI-induced upregulation of PSD-95 in the spinal dorsal horn. Furthermore, intrathecal injection of the PSD-95 inhibitor strikingly reversed the thermal and mechanical hyperalgesia. Our results suggest that blocking of NR2B signaling in the spinal cord could be used as a therapeutic candidate for treating neuropathic pain.
Collapse
Affiliation(s)
- Ling-Er Huang
- First Affiliated Hospital, Zhejiang University School of Medicine, Department of Anesthesia, Hangzhou, 310003, P.R. China
| | - Shao-Hui Guo
- First Affiliated Hospital, Zhejiang University School of Medicine, Department of Anesthesia, Hangzhou, 310003, P.R. China
| | | | - Yan Yang
- Zhejiang University School of Medicine, Centre for Neuroscience, Hangzhou, 310016, P.R. China
| | - Yan-Feng Zhou
- First Affiliated Hospital, Zhejiang University School of Medicine, Department of Anesthesia, Hangzhou, 310003, P.R. China
| | - Yong-Xing Yao
- First Affiliated Hospital, Zhejiang University School of Medicine, Department of Anesthesia, Hangzhou, 310003, P.R. China.
| |
Collapse
|
8
|
Berta T, Qadri Y, Tan PH, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets 2017; 21:695-703. [PMID: 28480765 DOI: 10.1080/14728222.2017.1328057] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Currently the treatment of chronic pain is inadequate and compromised by debilitating central nervous system side effects. Here we discuss new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. Areas covered: The DRGs contain the cell bodies of primary sensory neurons including nociceptive neurons. After painful injuries, primary sensory neurons demonstrate maladaptive molecular changes in DRG cell bodies and in their axons. These changes result in hypersensitivity and hyperexcitability of sensory neurons (peripheral sensitization) and are crucial for the onset and maintenance of chronic pain. We discuss the following new strategies to target DRGs and primary sensory neurons as a means of alleviating chronic pain and minimizing side effects: inhibition of sensory neuron-expressing ion channels such as TRPA1, TRPV1, and Nav1.7, selective blockade of C- and Aβ-afferent fibers, gene therapy, and implantation of bone marrow stem cells. Expert opinion: These peripheral pharmacological treatments, as well as gene and cell therapies, aimed at DRG tissues and primary sensory neurons can offer better and safer treatments for inflammatory, neuropathic, cancer, and other chronic pain states.
Collapse
Affiliation(s)
- Temugin Berta
- a Pain Research Center, Department of Anesthesiology , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Yawar Qadri
- b Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA
| | - Ping-Heng Tan
- c Department of Anesthesiology, E-Da Hospital, School of Medicine , I-Shou University , Kaohsiung , Taiwan
| | - Ru-Rong Ji
- b Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA.,d Department of Neurobiology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
9
|
Liu CC, Cheng JT, Hung KC, Chia YY, Tan PH. Lentiviral vector-encoded microRNA-based shRNA-mediated gene knockdown of N-methyl-D-aspartate receptors in skin reduces pain. Brain Behav 2017; 7:e00587. [PMID: 28127509 PMCID: PMC5256174 DOI: 10.1002/brb3.587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/03/2016] [Accepted: 08/28/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND PURPOSE RNA polymerase II promoters that drive the expression of rationally designed primary microRNA-based shRNA, for example, shRNAmir, can produce more potent gene knockdown than RNA polymerase III promoters. Antagonists of peripheral N methyl-D-aspartate (NMDA) receptors that do not interfere with central glutamate processing would prevent the development of adverse central nervous system effects. Thus, in this study, we examined the effects of gene silencing and antinociception on formalin- and Complete Freund's adjuvant (CFA)-induced pain in rats by subcutaneously injecting a lentiviral vector encoding a shRNAmir that targets the NR1 subunit of the NMDA receptor. METHODS Rats received intradermal injections of different doses of NR1 shRNAmir at different time points before injection of formalin. Pain behavior was assessed by monitoring the paw flinch response, paw withdrawal threshold, and thermal withdrawal latency. We then analyzed NR1 messenger RNA and protein expression in skin and the L5 dorsal root ganglion (DRG). RESULTS We found that intradermal injection of 1, 5, and 10 μg of shRNAmir significantly inhibited flinch responses (p < .05). Administration of 5 μg of shRNAmir resulted in the attenuation of CFA-induced mechanical allodynia, but did not affect the time spent on the rotarod. Real-time polymerase chain reaction and western blotting revealed that NR1 mRNA and protein levels were significantly lower in all NR1 shRNAmir1 groups than in controls (p < .05). There was a significant reduction in the percentage of NR1- and pERK-positive neurons in the DRG ipsilateral to shRNAmir treated paws (p < .05). The effect of antinociception and inhibition of NR1 expression by NR1 shRNAmir was evident on day 3 and persisted for 7 days after injection of 5 μg of vector. CONCLUSION Peripheral administration of the vector-encoded NR1 shRNAmir is a promising therapy for persistent inflammatory pain.
Collapse
Affiliation(s)
- Chien-Cheng Liu
- Department of Anesthesiology E-DA Hospital Kaohsiung Taiwan; Department of Biological Sciences National Sun Yat-Sen University Kaohsiung Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences National Sun Yat-Sen University Kaohsiung Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology E-DA Hospital Kaohsiung Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - Ping-Heng Tan
- Department of Anesthesiology E-DA Hospital Kaohsiung Taiwan; School of MedicineI-Shou University Kaohsiung Taiwan
| |
Collapse
|