1
|
Lomer NB, Asalemi KA, Saberi A, Sarlak K. Predictors of multiple sclerosis progression: A systematic review of conventional magnetic resonance imaging studies. PLoS One 2024; 19:e0300415. [PMID: 38626023 PMCID: PMC11020451 DOI: 10.1371/journal.pone.0300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a chronic neurodegenerative disorder that affects the central nervous system (CNS) and results in progressive clinical disability and cognitive decline. Currently, there are no specific imaging parameters available for the prediction of longitudinal disability in MS patients. Magnetic resonance imaging (MRI) has linked imaging anomalies to clinical and cognitive deficits in MS. In this study, we aimed to evaluate the effectiveness of MRI in predicting disability, clinical progression, and cognitive decline in MS. METHODS In this study, according to PRISMA guidelines, we comprehensively searched the Web of Science, PubMed, and Embase databases to identify pertinent articles that employed conventional MRI in the context of Relapsing-Remitting and progressive forms of MS. Following a rigorous screening process, studies that met the predefined inclusion criteria were selected for data extraction and evaluated for potential sources of bias. RESULTS A total of 3028 records were retrieved from database searching. After a rigorous screening, 53 records met the criteria and were included in this study. Lesions and alterations in CNS structures like white matter, gray matter, corpus callosum, thalamus, and spinal cord, may be used to anticipate disability progression. Several prognostic factors associated with the progression of MS, including presence of cortical lesions, changes in gray matter volume, whole brain atrophy, the corpus callosum index, alterations in thalamic volume, and lesions or alterations in cross-sectional area of the spinal cord. For cognitive impairment in MS patients, reliable predictors include cortical gray matter volume, brain atrophy, lesion characteristics (T2-lesion load, temporal, frontal, and cerebellar lesions), white matter lesion volume, thalamic volume, and corpus callosum density. CONCLUSION This study indicates that MRI can be used to predict the cognitive decline, disability progression, and disease progression in MS patients over time.
Collapse
Affiliation(s)
| | | | - Alia Saberi
- Department of Neurology, Poursina Hospital, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kasra Sarlak
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Bardel B, Chalah MA, Bensais-Rueda R, Créange A, Lefaucheur JP, Ayache SS. Event-related desynchronization and synchronization in multiple sclerosis. Mult Scler Relat Disord 2024; 86:105601. [PMID: 38604003 DOI: 10.1016/j.msard.2024.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Motor preparation and execution can be impaired in patients with multiple sclerosis (pwMS). These neural processes can be assessed using electroencephalography (EEG). During a self-paced movement, EEG signal amplitude decreases before movement (event-related desynchronization, ERD) and increases after movement (event-related synchronization, ERS). OBJECTIVE To reappraise ERD/ERS changes in pwMS compared to healthy controls (HC). METHODS This single-center study included 13 pwMS and 10 sex/age-matched HC. 60-channel EEG was recorded during two self-paced movements of the right hand: a simple index finger extension task and a more complex finger tapping task. Clinical variables included MS type, sex, age, disease duration, disability, grip strength, fatigue and attentional performance. EEG variables included ERD and ERS onset latency, duration, and amplitude determined using two methods of signal analyses (based on visual or automated determination) in the alpha and beta frequency bands in five cortical regions: right and left frontocentral and centroparietal regions and a midline region. Neuroimaging variables included the volumes of four deep brain structures (thalamus, putamen, pallidum and caudate nucleus) and the relative lesion load. RESULTS ERD/ERS changes in pwMS compared to HC were observed only in the beta band. In pwMS, beta-ERD had a delayed onset in the midline and right parietocentral regions and a shortened duration or increased amplitude in the parietocentral region; beta-ERS had a shorter duration, delayed onset, or reduced amplitude in the left parieto/frontocentral region. In addition, pwMS with a more delayed beta-ERD in the midline region had less impaired executive functions but increased caudate nuclei volume, while pwMS with a more delayed beta-ERS in the parietocentral region contralateral to the movement had less fatigue but increased thalami volume. CONCLUSION This study confirms an alteration of movement preparation and execution in pwMS, mainly characterized by a delayed cortical activation (ERD) and a delayed and reduced post-movement inhibition (ERS) in the beta band. Compensatory mechanisms could be involved in these changes, associating more preserved clinical performance and overactivation of deep brain structures.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Department of Clinical Neurophysiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, Creteil F-94010, France.
| | - Moussa A Chalah
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France
| | - Ruben Bensais-Rueda
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France
| | - Alain Créange
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Centre de Ressources et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, Créteil, France; Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, Creteil F-94010, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Department of Clinical Neurophysiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, Creteil F-94010, France
| | - Samar S Ayache
- Univ Paris Est Créteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, Créteil F-94010, France; Department of Clinical Neurophysiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, Creteil F-94010, France; Centre de Ressources et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, Créteil, France; Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, Creteil F-94010, France
| |
Collapse
|
3
|
Mainero C, Treaba CA, Barbuti E. Imaging cortical lesions in multiple sclerosis. Curr Opin Neurol 2023; 36:222-228. [PMID: 37078649 DOI: 10.1097/wco.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Cortical lesions are an established pathological feature of multiple sclerosis, develop from the earliest disease stages and contribute to disease progression. Here, we discuss current imaging approaches for detecting cortical lesions in vivo and their contribution for improving our understanding of cortical lesion pathogenesis as well as their clinical significance. RECENT FINDINGS Although a variable portion of cortical lesions goes undetected at clinical field strength and even at ultra-high field MRI, their evaluation is still clinically relevant. Cortical lesions are important for differential multiple sclerosis (MS) diagnosis, have relevant prognostic value and independently predict disease progression. Some studies also show that cortical lesion assessment could be used as a therapeutic outcome target in clinical trials. Advances in ultra-high field MRI not only allow increased cortical lesion detection in vivo but also the disclosing of some interesting features of cortical lesions related to their pattern of development and evolution as well to the nature of associated pathological changes, which might prove relevant for better understanding the pathogenesis of these lesions. SUMMARY Despite some limitations, imaging of cortical lesions is of paramount importance in MS for elucidating disease mechanisms as well as for improving patient management in clinic.
Collapse
Affiliation(s)
- Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Constantina A Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Barbuti
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Ospedale Sant'Andrea, University "La Sapienza", Rome, Italy
| |
Collapse
|
4
|
Salavisa M, Krupka D, Serrazina F. A woman with progressive motor and cognitive complaints. Neurol Sci 2023; 44:1471-1473. [PMID: 36753013 DOI: 10.1007/s10072-023-06666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
We describe the case of a 48-year-old woman presenting with a two-year history of progressive left hemibody-weakness associated with frequent falls, speech difficulties and cognitive dysfunction. Her clinical examination was noticeable for subcortical frontal-predominant cognitive impairment, asymmetrical spastic paraparesis, pseudobulbar findings and delayed horizontal saccade initiation with head-trust phenomenon. Apart from brain atrophy in excess for her age group, the patient's initial cranial-spinal MRI appearances were unremarkable.
Collapse
Affiliation(s)
- Manuel Salavisa
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal.
| | - Danna Krupka
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Filipa Serrazina
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| |
Collapse
|
5
|
Bardel B, Chalah MA, Créange A, Lefaucheur JP, Ayache SS. Motor preparation impairment in multiple sclerosis: Evidence from the Bereitschaftspotential in simple and complex motor tasks. Neurophysiol Clin 2022; 52:137-146. [PMID: 35307264 DOI: 10.1016/j.neucli.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, characterized by the accumulation of demyelinating lesions and axonal loss over its course. This study aimed to increase current knowledge of motor preparation in this condition, by assessing the two components of the Bereitschaftspotential (BP1 and BP2), also known as the readiness potential. METHODS Twelve patients with MS and ten age- and gender-matched healthy controls (HC) were included. Patients' demographic and clinical data were collected. Participants were asked to perform two different tasks, a simple index extension and a Luria sequence. BP1 and BP2 values were obtained from 18 central electroencephalography electrodes and were compared between the two groups. RESULTS Compared to HC, patients with MS showed earlier BP1 onset (i.e., longer latency) in almost all the analyzed scalp regions during index extension. This was also observed during the Luria sequence, but only in the centro-parietal regions. As for BP2 latency, no significant difference was noted between groups during either task. With regard to amplitudes, patients with MS had larger BP1 amplitudes in the right fronto-central area during index extension and greater BP1 and BP2 amplitudes in bilateral centro-parietal and left central regions during the Luria task. BP1 latency was also found to be significantly correlated with disease duration and performance on executive function tests (Trail Making Test). CONCLUSIONS This study showed, for the first time, changes in the Bereitschaftspotential in patients with MS. These data reflect prolonged movement preparation in this population and may suggest global alteration of the premotor scheme.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor university hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Moussa A Chalah
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor university hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Alain Créange
- AP-HP, Henri Mondor university hospital, Department of Neurology, DMU Médecine, F-94010 Creteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor university hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Samar S Ayache
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor university hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France.
| |
Collapse
|
6
|
Shaaban SM, Elmongui AE, Razek AAKA, Belal TM. Correlation of cortical lesions of multiple sclerosis at double inversion recovery with cognition screening scores. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Abstract
Background
Multiple sclerosis is a chronic inflammatory disease affecting both white and gray matters of the central nervous system. It has been approved that the degree of gray matter involvement is closely associated with the degree of physical disability and the extent of cognitive impairment. Thus, it is necessary to incorporate widely available simple methods for neurocognitive evaluation and gray matter detection in the periodic assessment of MS patients that will influence treatment decisions.
Objectives
To assess the correlation of cortical lesions of multiple sclerosis (MS) at double inversion recovery (DIR) with cognition screening scores
Methods
This study was conducted on 30 patients with MS with an average age of 31.3±13.6 years. All of them underwent MRI and clinical assessment with the calculation of Expanded Disability Status Scale (EDSS), Montreal Cognitive Assessment (MoCA), and Symbol Digit Modality Test (SDMT) scores. The image analysis was performed by 2 reviewers for cortical lesion number, shape, and subtypes, and total lesion load.
Results
Both MoCA and SDMT scales had a significant inverse correlation with cortical lesions number (r=− 0.68, − 0.72) respectively and total lesion load (r=− 0.53, − 0.65) respectively. Besides, there was a significant inverse correlation between the MoCA test, varied cortical subtypes: leukocortical, juxtacortical, and intracortical subtypes (r = − 0.63, − 0.56, − 0.52) respectively, and different cortical lesion shapes: oval, wedge, and curvilinear shaped (r = − 0.62, − 0.69, − 0.49) respectively. As well, the SDMT scale showed a significant inverse correlation with varied cortical subtypes: intracortical, leukocortical, and juxtacortical subtypes (r = − 0.63, − 0.61, − 0.57) respectively, and different cortical lesion shapes: oval, curvilinear, and wedge shaped (r = − 0.61, − 0.59, − 0.46) respectively. Interestingly, there was an excellent inter-observer correlation of cortical lesion number (r = 0.96), total lesion load (r = 0.95), subtypes of cortical lesion (r = 0.94), and cortical lesion shapes (r = 0.77).
Conclusion
We concluded that DIR can detect cortical lesions of MS, and MRI findings were well-correlated with cognitive dysfunction in these patients.
Collapse
|
7
|
Scherder RJ, Prins AJ, van Dorp MJ, van Klaveren C, Cornelisz I, Killestein J, Weinstein H. Pain, cognition and disability in advanced multiple sclerosis. Scand J Pain 2021; 21:754-765. [PMID: 34469640 DOI: 10.1515/sjpain-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES In patients with multiple sclerosis (MS), a relationship between physical disability and pain has been observed. In addition a relationship between physical disability and cognition in MS has been suggested. However, cognitive functions and pain appear not to be correlated in MS patients. Therefore, we examined whether a possible relationship between pain and cognitive functioning may exist, and if so, if such a relationship is mediated by physical disability. METHODS Forty-five MS patients with chronic pain, and in an advanced stage of the disease were included. Physical disabilities were assessed by the Expanded Disability Status Scale (EDSS). Episodic memory was assessed by means of the Eight Words test, and Face and Picture Recognition. Executive functions (EF) were examined by Digit Span Backward for working memory, and the Rule Shift Cards and Category Fluency test for cognitive flexibility. Pain Intensity and Pain Affect were assessed by means of visual analogue scales and one verbal pain scale and mood (depression, anxiety) by the Beck Depression Inventory and the Symptom Check List (SCL-90). The research questions were analyzed by means of regression analyses and the Sobel test for mediation. RESULTS A significant relationship was found between Pain Affect and EF, but that relationship was not mediated by physical disabilities (EDSS). In addition, Pain Intensity and EF showed a significant relationship but only in combination with physical disabilities (EDSS). Finally, mood was related to pain affect. DISCUSSION The findings suggest that the lower the EF, exclusively or in combination with more physical disabilities, the more the patient may suffer from pain. IMPLICATIONS The more one is cognitively and physically impaired, the more one might suffer from pain, and, the less one is able to communicate pain. The latter could put MS patients at risk for underdiagnosing and undertreatment of pain.
Collapse
Affiliation(s)
- Rogier J Scherder
- Medical Faculty, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | - Chris van Klaveren
- Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ilja Cornelisz
- Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Henry Weinstein
- Department of Neurology, OLVG location West, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Ultra-high field 7 T MRI has multiple applications for the in vivo characterization of the heterogeneous aspects underlying multiple sclerosis including the identification of cortical lesions, characterization of the different types of white matter plaques, evaluation of structures difficult to assess with conventional MRI (thalamus, cerebellum, spinal cord, meninges). RECENT FINDINGS The sensitivity of cortical lesion detection at 7 T is twice than at lower field MRI, especially for subpial lesions, the most common cortical lesion type in multiple sclerosis. Cortical lesion load accrual is independent of that in the white matter and predicts disability progression.Seven Tesla MRI provides details on tissue microstructure that can be used to improve white matter lesion characterization. These include the presence of a central vein, whose identification can be used to improve multiple sclerosis diagnosis, or the appearance of an iron-rich paramagnetic rim on susceptibility-weighted images, which corresponds to iron-rich microglia at the periphery of slow expanding lesions. Improvements in cerebellar and spinal cord tissue delineation and lesion characterization have also been demonstrated. SUMMARY Imaging at 7 T allows assessing more comprehensively the complementary pathophysiological aspects of multiple sclerosis, opening up novel perspectives for clinical and therapeutics evaluation.
Collapse
|
9
|
Doskas T, Vavougios GD, Karampetsou P, Kormas C, Synadinakis E, Stavrogianni K, Sionidou P, Serdari A, Vorvolakos T, Iliopoulos I, Vadikolias Κ. Neurocognitive impairment and social cognition in multiple sclerosis. Int J Neurosci 2021; 132:1229-1244. [PMID: 33527857 DOI: 10.1080/00207454.2021.1879066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE/AIM OF THE STUDY The impairment of neurocognitive functions occurs in all subtypes of multiple sclerosis, even from the earliest stages of the disease. Commonly reported manifestations of cognitive impairment include deficits in attention, conceptual reasoning, processing efficiency, information processing speed, memory (episodic and working), verbal fluency (language), and executive functions. Multiple sclerosis patients also suffer from social cognition impairment, which affects their social functioning. The objective of the current paper is to assess the effect of neurocognitive impairment and its potential correlation with social cognition performance and impairment in multiple sclerosis patients. MATERIALS AND METHODS An overview of the available-to-date literature on neurocognitive impairment and social cognition performance in multiple sclerosis patients by disease subtype was performed. RESULTS It is not clear if social cognition impairment occurs independently or secondarily to neurocognitive impairment. There are associations of variable strengths between neurocognitive and social cognition deficits and their neural basis is increasingly investigated. CONCLUSIONS The prompt detection of neurocognitive predictors of social cognition impairment that may be applicable to all multiple sclerosis subtypes and intervention are crucial to prevent further neural and social cognition decline in multiple sclerosis patients.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece.,Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | | | | | | | | | | | - Aspasia Serdari
- Department of Psychiatry, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Theofanis Vorvolakos
- Department of Psychiatry, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | |
Collapse
|
10
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Ouellette R, Sloane JA, Klawiter EC, Kinkel RP, Mainero C. The relevance of multiple sclerosis cortical lesions on cortical thinning and their clinical impact as assessed by 7.0-T MRI. J Neurol 2021; 268:2473-2481. [PMID: 33523256 DOI: 10.1007/s00415-021-10400-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study aimed to investigate at 7.0-T MRI a) the role of multiple sclerosis (MS) cortical lesions in cortical tissue loss b) their relation to neurological disability. METHODS In 76 relapsing remitting and 26 secondary progressive MS patients (N = 102) and 56 healthy subjects 7.0-T T2*-weighted images were acquired for lesion segmentation; 3.0-T T1-weighted structural scans for cortical surface reconstruction/cortical thickness estimation. Patients were dichotomized based on the median cortical lesion volume in low and high cortical lesion load groups that differed by age, MS phenotype and degree of neurological disability. Group differences in cortical thickness were tested on reconstructed cortical surface. Patients were evaluated clinically by means of the Expanded Disability Status Scale (EDSS). RESULTS Cortical lesions were detected in 96% of patients. White matter lesion load was greater in the high than in the low cortical lesion load MS group (p = 0.01). Both MS groups disclosed clusters (prevalently parietal) of cortical thinning relative to healthy subjects, though these regions did not show the highest cortical lesion density, which predominantly involved frontal regions. Cortical thickness decreased on average by 0.37 mm, (p = 0.002) in MS patients for each unit standard deviation change in white matter lesion volume. The odds of having a higher EDSS were associated with cortical lesion volume (1.78, p = 0.01) and disease duration (1.15, p < 0.001). CONCLUSION Cortical thinning in MS is not directly related to cortical lesion load but rather with white matter lesion volume. Neurological disability in MS is better explained by cortical lesion volume assessment.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Golan D, Doniger GM, Srinivasan J, Sima DM, Zarif M, Bumstead B, Buhse M, Van Hecke W, Wilken J, Gudesblatt M. The association between MRI brain volumes and computerized cognitive scores of people with multiple sclerosis. Brain Cogn 2020; 145:105614. [PMID: 32927305 DOI: 10.1016/j.bandc.2020.105614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Computerized cognitive assessment facilitates the incorporation of multi-domain cognitive monitoring into routine clinical care. The predictive validity of computerized cognitive assessment among people with multiple sclerosis (PwMS) has scarcely been investigated. OBJECTIVE To explore the associations between brain volumes and cognitive scores from a computerized cognitive assessment battery (CAB, NeuroTrax) among PwMS. METHODS PwMS were evaluated with the CAB and underwent brain MRI within 40 days. Cognitive assessment yielded age- and education-adjusted scores in 9 cognitive domains: memory, executive function, attention, information processing speed, visual spatial, verbal function, motor skills, problem solving, and working memory. The global cognitive score (GCS) is the average of all domain scores. MRI brain and lesion volumes were assessed with icobrain ms, a fully automated tissue and lesion segmentation and quantification software. RESULTS 91 PwMS were included [Age: 52.1 ± 11.7 years, 64 (70%) female, EDSS: 3.4 ± 2.0, 79 (87%) with a relapsing remitting course]. Significant correlations were found between the GCS and whole brain, white matter, grey matter, thalamic, lateral ventricles, hippocampal and lesion volumes (Correlation coefficients: 0.46, 0.40, 0.25, 0.42, -0.36, 0.21, -0.3, respectively). Regression analysis revealed that lateral ventricles and thalamic volumes were the most consistent predictors of all cognitive domain scores. CONCLUSION Computerized cognitive scores were significantly associated with quantified MRI. These findings support the predictive validity of multi-domain computerized cognitive assessment for people with multiple sclerosis.
Collapse
Affiliation(s)
- Daniel Golan
- Department of Neurology & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Glen M Doniger
- Department of Clinical Research, NeuroTrax Corporation, Modiin, Israel
| | | | - Diana M Sima
- Research and Development Department, icometrix, Leuven, Belgium
| | - Myassar Zarif
- South Shore Neurologic Associates, Patchogue, NY, USA
| | | | | | - Wim Van Hecke
- Research and Development Department, icometrix, Leuven, Belgium
| | - Jeffrey Wilken
- Washington Neuropsychology Research Group, Fairfax, VA, USA; Department of Neurology, Georgetown University, Washington DC, USA
| | | |
Collapse
|
12
|
Fukumoto S, Nakamura Y, Watanabe M, Isobe N, Matsushita T, Sakoda A, Hiwatashi A, Shinoda K, Yamasaki R, Tsujino A, Kira JI. Risk HLA-DRB1 alleles differentially influence brain and lesion volumes in Japanese patients with multiple sclerosis. J Neurol Sci 2020; 413:116768. [DOI: 10.1016/j.jns.2020.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
|
13
|
Shinoda K, Matsushita T, Nakamura Y, Masaki K, Sakai S, Nomiyama H, Togao O, Hiwatashi A, Niino M, Isobe N, Kira JI. Contribution of cortical lesions to cognitive impairment in Japanese patients with multiple sclerosis. Sci Rep 2020; 10:5228. [PMID: 32251297 PMCID: PMC7090088 DOI: 10.1038/s41598-020-61012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023] Open
Abstract
Cortical lesions (CLs) have a low prevalence and are associated with physical disabilities in Japanese patients with multiple sclerosis (MS). However, the contribution of CLs to cognitive impairment remains unclear in Asian MS. Sixty-one prospectively enrolled MS patients underwent three-dimensional double inversion recovery MR imaging, the Brief Repeatable Battery of Neuropsychological Tests (BRB-N), the Apathy Scale (AS), the Fatigue Questionnaire (FQ), and the Hospital Anxiety and Depression Scale (HADS) within a 1-week period. The cognitive impairment index (CII) score was calculated to measure patients’ overall cognitive impairment. MS patients with CLs had poorer scores than those without CLs in most BRB-N tests, but scored comparably in the FQ, AS, and HADS. The number of CLs correlated negatively with all BRB-N test scores and positively with total CII scores. Leukocortical lesions were more extensively associated with cognitive dysfunction in various domains than intracortical lesions. Stepwise multiple regression analysis revealed that potential confounding factors for the highest quartile of CII score were the number of CLs (odds ratio 2.38, p = 0.0070) and the Expanded Disability Severity Scale score (odds ratio 2.13, p = 0.0003). Our results demonstrate that the presence and number of CLs are robustly associated with cognitive dysfunction in Asian MS patients.
Collapse
Affiliation(s)
- Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shiori Sakai
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruka Nomiyama
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Umino M, Maeda M, Ii Y, Tomimoto H, Sakuma H. 3D double inversion recovery MR imaging: Clinical applications and usefulness in a wide spectrum of central nervous system diseases. J Neuroradiol 2018; 46:107-116. [PMID: 30016704 DOI: 10.1016/j.neurad.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/03/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022]
Abstract
Double inversion recovery (DIR) imaging provides two inversion pulses that attenuate signals from cerebrospinal fluid and normal white matter. This review was undertaken to describe the principle of the DIR sequence, the clinical applications of 3D DIR in various central nervous system diseases and the clinical benefits of the 3D DIR compared with those of other MR sequences. 3D DIR imaging provides better lesion conspicuity and topography than other MR techniques. It is particularly useful for diagnosing the following disease entities: cortical and subcortical abnormalities such as multiple sclerosis, cortical microinfarcts and cortical development anomalies; sulcal abnormalities such as meningitis and subacute/chronic subarachnoid hemorrhage; and optic neuritis caused by multiple sclerosis or neuromyelitis optica.
Collapse
Affiliation(s)
- Maki Umino
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, 514-8507 Tsu, Mie, Japan.
| | - Masayuki Maeda
- Department of Advanced Diagnostic Imaging, Mie University School of Medicine, Tsu, Mie, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, 514-8507 Tsu, Mie, Japan
| |
Collapse
|