1
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Wang Z, Wu L, Wang W. Innovative delivery systems for epicutaneous immunotherapy. Front Immunol 2023; 14:1238022. [PMID: 37675117 PMCID: PMC10479942 DOI: 10.3389/fimmu.2023.1238022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Allergen-specific immunotherapy (AIT) describes the establishment of peripheral tolerance through repeated allergen exposure, which qualifies as the only curative treatment for allergic diseases. Although conventional subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) have been approved to treat respiratory allergies clinically, the progress made is far from satisfactory. Epicutaneous immunotherapy (EPIT) exploits the skin's immune properties to modulate immunological response, which is emerging as a promising alternative and has shown effectiveness in many preclinical and clinical studies for both respiratory and food allergies. It is worth noting that the stratum corneum (SC) barrier impedes the effective delivery of allergens, while disrupting the SC layer excessively often triggers unexpected Th2 immune responses. This work aims to comprehend the immunological mechanisms of EPIT, and summarize the innovative system for sufficient delivery of allergens as well as tolerogenic adjuvants. Finally, the safety, acceptability, and cost-effectiveness of these innovative delivery systems are discussed, which directs the development of future immunotherapies with all desirable characteristics.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacy, The First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingzhi Wu
- Department of Pharmacy, The First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
Zhang Y, Pan W, Wang D, Wang H, Hou Y, Zou M, Piao H. Solid-in-oil nanodispersion as a novel topical transdermal delivery to enhance stability and skin permeation and retention of hydrophilic drugs l-ascorbic acid. Eur J Pharm Biopharm 2023; 185:82-93. [PMID: 36791884 DOI: 10.1016/j.ejpb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
l-ascorbic acid (Vitamin C, VC) is the most abundant antioxidant in human skin. But its poor penetration into the skin and unstability limit the application. The aim of the study was to promote the topical skin permeation and retention of VC, increase the stability as well as effectiveness by a novel solid in oil nanodispersion. In the nanodispersions system, nano-sized particles of hydrophilic molecules are dispersed in an oil vehicle with the assistance of hydrophobic surfactants. The optimized formula composed of O170 and S1570 (12.5:1, w/w) showed high EE% of 98% and good stability. FTIR analysis confirmed that there may be hydrogen bond between VC and surfactants. The results of DSC, and XRD revealed that the drug was successfully encapsulated in the surfactants, which maintained the stability of drug. By analyzing and fitting the release data in vitro, the drug release mechanism of SONDs was predicted as a multi-dynamic model. Skin permeation of VC was improved 3.43-fold for SONDs compared with VC aqueous solution, highlighting that the lipophilicity and nano size of the carrier more easily penetrated into the skin. Finally, the photoaging study revealed that topical application of VC-SONDs provided the highest skin protection compared UV and VC aqueous solution treated group which was evident by the normal thick epidermal morphology, no obvious melanocytes and the densely arranged dermal elastic fibers. These results demonstrated that the solid-in-oil nanodispersions may be a potential transdermal delivery system for hydrophilic bioactive ingredients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxiu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dequan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Han Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yanting Hou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Hongyu Piao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Vij S, Thakur R, Rishi P. Reverse engineering approach: a step towards a new era of vaccinology with special reference to Salmonella. Expert Rev Vaccines 2022; 21:1763-1785. [PMID: 36408592 DOI: 10.1080/14760584.2022.2148661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Salmonella is responsible for causing enteric fever, septicemia, and gastroenteritis in humans. Due to high disease burden and emergence of multi- and extensively drug-resistant Salmonella strains, it is becoming difficult to treat the infection with existing battery of antibiotics as we are not able to discover newer antibiotics at the same pace at which the pathogens are acquiring resistance. Though vaccines against Salmonella are available commercially, they have limited efficacy. Advancements in genome sequencing technologies and immunoinformatics approaches have solved the problem significantly by giving rise to a new era of vaccine designing, i.e. 'Reverse engineering.' Reverse engineering/vaccinology has expedited the vaccine identification process. Using this approach, multiple potential proteins/epitopes can be identified and constructed as a single entity to tackle enteric fever. AREAS COVERED This review provides details of reverse engineering approach and discusses various protein and epitope-based vaccine candidates identified using this approach against typhoidal Salmonella. EXPERT OPINION Reverse engineering approach holds great promise for developing strategies to tackle the pathogen(s) by overcoming the limitations posed by existing vaccines. Progressive advancements in the arena of reverse vaccinology, structural biology, and systems biology combined with an improved understanding of host-pathogen interactions are essential components to design new-generation vaccines.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Zhuang X, Chen L, Yang S, Xia S, Xu Z, Zhang T, Zeng B, Yu T, Yu N, Wang W, Lu H, Tian M, Jin N. R848 Adjuvant Laden With Self-Assembled Nanoparticle-Based mRNA Vaccine Elicits Protective Immunity Against H5N1 in Mice. Front Immunol 2022; 13:836274. [PMID: 35711431 PMCID: PMC9197463 DOI: 10.3389/fimmu.2022.836274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In order to perfect the design strategy of messenger RNA (mRNA) vaccines against the H5N1 influenza virus, we investigated whether different antigen designs and the use of adjuvants could improve the immune effect of mRNA vaccines. We designed three different forms of antigen genes, including Flu [H1/H3/H5/B-HA2(aa90~105)-M2e(24aa)], Flu-Fe (Fe, ferritin), and CD5-Flu-Fe (CD5, a secretion signal peptide). Meanwhile, R848 (Requimod) was selected as the adjuvant of the mRNA vaccine. We prepared cationic lipid nanoparticles for mRNA delivery, named LNP-Man (mannose-modified lipid nanoparticles). Cell transfection results showed that Flu-Fe/CD5-Flu-Fe containing ferritin could express the target antigens HA2 and M2e more efficiently than Flu. In the mice immune experiment, five immune groups (LNP-Man/Flu, LNP-Man/Flu-Fe, LNP-Man/CD5-Flu-Fe, LNP-Man/Flu-Fe+R848, and LNP-Man/CD5-Flu-Fe+R848) and two control groups (LNP-Man, PBS) were set up. After being infected with the 1×LD50 H5N1 avian influenza virus, the survival rate of the mice in the LNP-Man/CD5-Flu-Fe, LNP-Man/Flu-Fe+R848, and LNP-Man/CD5-Flu-Fe+R848 were 100%. More importantly, in LNP-Man/Flu-Fe+R848 and LNP-Man/CD5-Flu-Fe+R848 groups, there was no residual virus detected in the mice lung tissue on the 5th day postchallenge. Overall, this study provides a new idea for the design of H5N1 avian influenza virus mRNA vaccines in terms of antigen designs and adjuvant selection.
Collapse
Affiliation(s)
- Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luer Chen
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songhui Yang
- College of Agriculture, Yanbian University, Agricultural College of Yanbian University, Yanji, China
| | - Shengnan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Xu
- College of Agriculture, Yanbian University, Agricultural College of Yanbian University, Yanji, China
| | - Tong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Boyu Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Ning Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021; 13:pharmaceutics13122060. [PMID: 34959344 PMCID: PMC8706843 DOI: 10.3390/pharmaceutics13122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Agonists for toll-like receptors (TLRs) have shown promising activities against cancer. In the present study, a squalene-based nanoemulsion (NE) was loaded with resiquimod, a TLR7/8 agonist for therapeutic delivery. R848 NE was developed and characterized for long-term stability. In vitro and in vivo antitumor immunity of R848 NE were also evaluated in combination with SD-101, a CpG-containing TLR9 agonist. In vitro studies demonstrated strong long-term stability and immune responses to R848 NE. When combined with SD-101, strong antitumor activity was observed in MC38 murine colon carcinoma model with over 80% tumor growth inhibition. The combination treatment showed a 4-fold increase in systemic TNFa production and a 2.6-fold increase in Cd8a expression in tumor tissues, suggesting strong cell-mediated immune responses against the tumor. The treatment not only demonstrated a strong antitumor immunity by TLR7/8 and TLR9 activations but also induced PD-L1 upregulation in tumors, suggesting a potential therapeutic synergy with immune checkpoint inhibitors.
Collapse
|
7
|
Pusch L, Brox R, Scheuer K, Yokosawa T, Wu M, Zubiri BA, Spiecker E, Jandt KD, Fischer D, Hackstein H. Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acid nanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine (Lond) 2021; 16:2075-2094. [PMID: 34523349 DOI: 10.2217/nnm-2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles can be prepared by emulsion-solvent-evaporation from o/w and w1/o/w2 emulsions. Aims: To elaborate similarities and differences regarding mechanical, morphological and physicochemical properties, as well as endocytosis and dose-dependent immune responses by primary human leukocytes between nanoparticles prepared by these two methods. Methods: Fluorescently labeled as well as TLR agonist (R848)-loaded PLGA nanoparticles were prepared via both single- and double-emulsion solvent evaporation. Results: Particles prepared by both methods were similar in chemical composition and surface charge but exhibited slight differences in size and morphology. Pronounced differences were found for loading, dissolution and mechanical properties. The particles were differently endocytosed by monocytes and induced qualitatively and quantitatively different immune responses. Conclusions: Variations in nanoparticle preparation can affect particle-derived immunological characteristics.
Collapse
Affiliation(s)
- Lennart Pusch
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Regine Brox
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Karl Scheuer
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Mingjian Wu
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Erdmann Spiecker
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Klaus D Jandt
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Dagmar Fischer
- Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4 (Haus 6), Erlangen, 91058, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| |
Collapse
|
8
|
Sallam MA, Prakash S, Kumbhojkar N, Shields CW, Mitragotri S. Formulation-based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives. Bioeng Transl Med 2021; 6:e10215. [PMID: 34589595 PMCID: PMC8459604 DOI: 10.1002/btm2.10215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
A growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin. Recently, a large body of research has been directed toward improving the delivery of macromolecules to the skin, ranging from nucleic acids (NAs) to antigens, using noninvasive means. In this review, we discuss the latest formulation-based efforts to deliver antigens and NAs for vaccination and treatment of skin diseases. We provide a perspective of their advantages, limitations, and potential for clinical translation. The delivery platforms discussed in this review may provide formulation scientists and clinicians with a better vision of the alternatives for dermal delivery of biomacromolecules, which may facilitate the development of new patient-friendly prophylactic and therapeutic medicines.
Collapse
Affiliation(s)
- Marwa A. Sallam
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
- Present address:
Department of Industrial PharmacyFaculty of Pharmacy, Alexandria UniversityEgypt
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Charles Wyatt Shields
- Department of Chemical & Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Solid-in-Oil Nanodispersions for Transcutaneous Immunotherapy of Japanese Cedar Pollinosis. Pharmaceutics 2020; 12:pharmaceutics12030240. [PMID: 32156090 PMCID: PMC7150915 DOI: 10.3390/pharmaceutics12030240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
Japanese cedar pollinosis (JCP) is a common affliction caused by an allergic reaction to cedar pollen and is considered a disease of national importance in Japan. Antigen-specific immunotherapy (AIT) is the only available curative treatment for JCP. However, low compliance and persistence have been reported among patients subcutaneously or sublingually administered AIT comprising a conventional antigen derived from a pollen extract. To address these issues, many research studies have focused on developing a safer, simpler, and more effective AIT for JCP. Here, we review the novel antigens that have been developed for JCP AIT, discuss their different administration routes, and present the effects of anti-allergy treatment. Then, we describe a new form of AIT called transcutaneous immunotherapy (TCIT) and its solid-in-oil (S/O) nanodispersion formulation, which is a promising antigen delivery system. Finally, we discuss the applications of S/O nanodispersions for JCP TCIT. In this context, we predict that TCIT delivery by using a S/O nanodispersion loaded with novel antigens may offer an easier, safer, and more effective treatment option for JCP patients.
Collapse
|
10
|
Kong Q, Higasijima K, Wakabayashi R, Tahara Y, Kitaoka M, Obayashi H, Hou Y, Kamiya N, Goto M. Transcutaneous Delivery of Immunomodulating Pollen Extract-Galactomannan Conjugate by Solid-in-Oil Nanodispersions for Pollinosis Immunotherapy. Pharmaceutics 2019; 11:E563. [PMID: 31671640 PMCID: PMC6920820 DOI: 10.3390/pharmaceutics11110563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023] Open
Abstract
Japanese cedar pollinosis is a type I allergic disease and has already become a major public health problem in Japan. Conventional subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) cannot meet patients' needs owing to the side effects caused by both the use of conventional whole antigen molecules in the pollen extract and the administration routes. To address these issues, a surface-modified antigen and transcutaneous administration route are introduced in this research. First, the pollen extract (PE) was conjugated to galactomannan (PE-GM) to mask immunoglobulin E (IgE)-binding epitopes in the PE to avoid side effects. Second, as a safer alternative to SCIT and SLIT, transcutaneous immunotherapy (TCIT) with a solid-in-oil (S/O) nanodispersion system carrying PE-GM was proposed. Hydrophilic PE-GM was efficiently delivered through mouse skin using S/O nanodispersions, reducing the antibody secretion and modifying the type 1 T helper (Th1)/ type 2 T helper (Th2) balance in the mouse model, thereby demonstrating the potential to alleviate Japanese cedar pollinosis.
Collapse
Affiliation(s)
- Qingliang Kong
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Kouki Higasijima
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yanting Hou
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka 819-0395, Japan;.
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka 819-0395, Japan;.
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
11
|
Mitragotri S. Editorial: The launch phase of Bioengineering & Translational Medicine. Bioeng Transl Med 2019; 4:e10140. [PMID: 31572798 PMCID: PMC6764802 DOI: 10.1002/btm2.10140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Samir Mitragotri
- Biologically Inspired Engineering Harvard University Boston Massachusetts
| |
Collapse
|
12
|
Hong J, Xiao X, Gao Q, Li S, Jiang B, Sun X, Ran P, Yang P. Co-delivery of allergen epitope fragments and R848 inhibits food allergy by inducing tolerogenic dendritic cells and regulatory T cells. Int J Nanomedicine 2019; 14:7053-7064. [PMID: 31564865 PMCID: PMC6722440 DOI: 10.2147/ijn.s215415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Food allergy (FA) is a significant public health problem. The therapeutic efficacy for FA is unsatisfactory currently. The breakdown of intestinal immune tolerance is associated with the pathogenesis of FA. Therefore, it is of great significance to develop novel therapeutic methods to restore immune tolerance in treating FA. METHODS We proposed an oral administration strategy to treat FA by co-delivering food allergen epitope fragment (peptide: IK) and adjuvant R848 (TLR7 ligand) in the mPEG-PDLLA nanoparticles (PPLA-IK/R848 NPs). The generation of tolerogenic dendritic cells (DCs) and regulatory T cells (Tregs) induced by PPLA-IK/R848 NPs were evaluated in vitro and in vivo. The therapeutic effects of PPLA-IK/R848 NPs were also assessed in an OVA-induced FA model. RESULTS PPLA-IK/R848 NPs could efficiently deliver IK to DCs to drive DCs into the tolerogenic phenotypes and promote the differentiation of Tregs in vitro and in vivo, significantly inhibited FA responses through the recovery of intestinal immune tolerance. CONCLUSION Oral administration of PPLA-IK/R848 NPs could efficiently deliver IK and R848 to intestinal DCs and stimulate DCs into allergen tolerogenic phenotype. These tolerogenic DCs could promote the differentiation of Tregs, which significantly protected mice from food allergic responses. This study provided an efficient formulation to alleviate FA through the recovery of immune tolerance.
Collapse
Affiliation(s)
- Jingyi Hong
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen518020, People’s Republic of China
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Xiaojun Xiao
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Qichan Gao
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Shanshan Li
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Bei Jiang
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Xizhuo Sun
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen518020, People’s Republic of China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
13
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
14
|
Wakabayashi R, Sakuragi M, Kozaka S, Tahara Y, Kamiya N, Goto M. Solid-in-Oil Peptide Nanocarriers for Transcutaneous Cancer Vaccine Delivery against Melanoma. Mol Pharm 2018; 15:955-961. [DOI: 10.1021/acs.molpharmaceut.7b00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Karande P. Introduction to special issue: Bioengineered Therapeutics. The Next Generation of Drug Development. Bioeng Transl Med 2017; 2:4-5. [PMID: 29313022 PMCID: PMC5689523 DOI: 10.1002/btm2.10055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Pankaj Karande
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|