1
|
Zhu J, Liu Z, Liu Q, Xu Q, Ding C, Chen Z, Li J, Wu Z. Enhanced neural recovery and reduction of secondary damage in spinal cord injury through modulation of oxidative stress and neural response. Sci Rep 2024; 14:19042. [PMID: 39152171 PMCID: PMC11329651 DOI: 10.1038/s41598-024-69861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Spinal cord injury (SCI) presents a critical medical challenge, marked by substantial neural damage and persistent functional deficits. This study investigates the therapeutic potential of cold atmospheric plasma (CAP) for SCI, utilizing a tailored dielectric barrier discharge (DBD) device to conduct comprehensive in vivo and in vitro analyses. The findings show that CAP treatment significantly improves functional recovery after SCI, reduces neuronal apoptosis, lowers inflammation, and increases axonal regeneration. These findings illustrate the efficacy of CAP in fostering a conducive environment for recovery by modulating inflammatory responses, enhancing neuronal survival, and encouraging regenerative processes. The underlying mechanism involves CAP's reactive oxygen species (ROS) reduction, followed by activating antioxidant enzymes. These findings position CAP as a pioneering approach for spinal cord injury (SCI) treatment, presenting opportunities for improved neural recovery and establishing a new paradigm in SCI therapy.
Collapse
Affiliation(s)
- Jiwen Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, 230061, Anhui, China
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Jun Li
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
2
|
Ni LY, Ding CB, Deng JM, Wu ZW, Zhou Y. Cold Air Plasma Inhibiting Tumor-Like Biological Behavior of Rheumatoid Arthritis Fibroblast-Like Synovial Cells via G2/M Cell Cycle Arrest. Open Access Rheumatol 2024; 16:75-85. [PMID: 38756916 PMCID: PMC11096841 DOI: 10.2147/oarrr.s438536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Rheumatoid arthritis fibroblast-like synovial cells (RA-FLS) have become the core effector cells for the progression of rheumatoid arthritis due to their "tumor-like cell" characteristics, such as being able to break free from growth restrictions caused by contact inhibition, promoting angiogenesis, invading surrounding tissues, and leading to uncontrolled synovial growth. In recent years, cold air plasma (CAP) has been widely recognized for its clear anticancer effect. Inspired by this, this study investigated the inhibitory effect of CAP on the tumor-like biological behavior of RA-FLS through in vitro experiments. Methods Treatment of RA-FLS with CAP at different time doses (0s, 30s, 60s, 120s). 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay was used to determine the cell viability. Analysis of cell migration and invasion was performed by wound-healing assay, transwell assay and immunofluorescent staining for f-actin, respectively. Flow cytometry technique was used for analysis of cell cycle and determination of reactive oxygen species (ROS). Hoechst staining was used for analysis of cell apoptosis. Protein expression was analyzed by Western blot analysis. Results Molecular and cellular level mechanisms have revealed that CAP blocks RA-FLS in the G2/M phase by increasing intracellular reactive oxygen species (ROS), leading to increased apoptosis and significantly reduced migration and invasion ability of RA-FLS. Conclusion Overall, CAP has significant anti proliferative, migratory, and invasive effects on RA-FLS. This study reveals a new targeted treatment strategy for RA.
Collapse
Affiliation(s)
- Le-Ying Ni
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Department of Rehabilitation Medicine, Maanshan People’s Hospital, Maanshan, Anhui, People’s Republic of China
| | - Cheng-Biao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ji-Min Deng
- Anhui institute for Food and Drug Control, Hefei, People’s Republic of China
| | - Zheng-Wei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People’s Republic of China
- CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, People’s Republic of China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
3
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
4
|
Wang F, Zhou T, Zhou CX, Zhang QB, Wang H, Zhou Y. The worsening of skeletal muscle atrophy induced by immobilization at the early stage of remobilization correlates with BNIP3-dependent mitophagy. BMC Musculoskelet Disord 2023; 24:632. [PMID: 37542244 PMCID: PMC10401904 DOI: 10.1186/s12891-023-06759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Recent studies have shown that immobilization enhances reactive oxygen species (ROS) production and mitophagy activity in atrophic skeletal muscle. However, there are relatively few studies examining the biological changes and underlying mechanisms of skeletal muscle during remobilization. In this study, we aimed to investigate the effects of remobilization on skeletal muscle and explore the role of BNIP3-dependent mitophagy in this process. METHODS Thirty rats were randomly divided into six groups based on immobilization and remobilization time: control (C), immobilization for two weeks (I-2w), and remobilization for one day (R-1d), three days (R-3d), seven days (R-7d), and two weeks (R-2w). At the end of the experimental period, the rectus femoris muscles were removed and weighed, and the measurements were expressed as the ratio of muscle wet weight to body weight (MWW/BW). Sirius Red staining was performed to calculate the values of cross-sectional area (CSA) of rectus femoris. Oxidative fluorescent dihydroethidium was used to evaluate the production of ROS, and the levels of superoxide dismutase (SOD) were also detected. The morphological changes of mitochondria and the formation of mitophagosomes in rectus femoris were examined and evaluated by transmission electron microscope. Immunofluorescence was employed to detect the co-localization of BNIP3 and LC3B, while Western blot analysis was performed to quantify the levels of proteins associated with mitophagy and mitochondrial biogenesis. The total ATP content of the rectus femoris was determined to assess mitochondrial function. RESULTS Within the first three days of remobilization, the rats demonstrated decreased MWW/BW, CSA, and ATP concentration, along with increased ROS production and HIF-1α protein levels in the rectus femoris. Results also indicated that remobilization triggered BNIP3-dependent mitophagy, supported by the accumulation of mitophagosomes, the degradation of mitochondrial proteins (including HSP60 and COX IV), the elevation of BNIP3-dependent mitophagy protein markers (including BNIP3, LC3B-II/LC3B-I, and Beclin-1), and the accumulation of puncta representing co-localization of BNIP3 with LC3B. Additionally, PGC-1α, which is involved in the regulation of mitochondrial biogenesis, was upregulated within the first seven days of remobilization to counteract this adverse effect. CONCLUSION Our findings suggested that BNIP3-denpendent mitophagy was sustained activated at the early stages of remobilization, and it might contribute to the worsening of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chen Xu Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Quan Bing Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230032, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China.
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|