1
|
Wong TH, Khater IM, Hallgrimson C, Li YL, Hamarneh G, Nabi IR. SuperResNET - single-molecule network analysis detects changes to clathrin structure induced by small-molecule inhibitors. J Cell Sci 2025; 138:JCS263570. [PMID: 39865933 DOI: 10.1242/jcs.263570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
SuperResNET is a network analysis pipeline for the analysis of point cloud data generated by single-molecule localization microscopy (SMLM). Here, we applied SuperResNET network analysis of SMLM direct stochastic optical reconstruction microscopy (dSTORM) data to determine how the clathrin endocytosis inhibitors pitstop 2, dynasore and latrunculin A (LatA) alter the morphology of clathrin-coated pits. SuperResNET analysis of HeLa and Cos7 cells identified three classes of clathrin structures: small oligomers (class I), pits and vesicles (class II), and larger clusters corresponding to fused pits or clathrin plaques (class III). Pitstop 2 and dynasore treatment induced distinct homogeneous populations of class II structures in HeLa cells, suggesting that they arrest endocytosis at different stages. Inhibition of endocytosis was not via actin depolymerization, as the actin-depolymerizing agent LatA induced large, heterogeneous clathrin structures. Ternary analysis of SuperResNET shape features presented a distinct more planar profile for blobs from pitstop 2-treated cells, which aligned with clathrin pits identified with high-resolution minimal photon fluxes (MINFLUX) microscopy, whereas control structures resembled MINFLUX clathrin vesicles. SuperResNET analysis therefore showed that pitstop 2 arrests clathrin pit maturation at early stages of pit formation, representing an approach to detect the effect of small molecules on target structures in situ in the cell from SMLM datasets.
Collapse
Affiliation(s)
- Timothy H Wong
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ismail M Khater
- School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering and Technology, Birzeit University, Birzeit P627, Palestine
| | | | - Y Lydia Li
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ivan R Nabi
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Stefanello ST, Mizdal CR, da Silva AF, Todesca LM, Soares FAA, Shahin V. Synergistic activity of Pitstop-2 and 1,6-hexanediol in aggressive human lung cancer cells. DISCOVER NANO 2025; 20:12. [PMID: 39836351 PMCID: PMC11751257 DOI: 10.1186/s11671-025-04184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity. Besides, both compounds interfere with the integrity of nuclear pore complexes, the gatekeepers for all nucleocytoplasmic transport. Herein, we investigate the possible synergistic effects of both compounds on lowly, highly metastatic, and erlotinib-resistant non-small cell lung cancer. We observe a synergistic cytotoxic effect on erlotinib-resistant cells. Moreover, motility assays show that the compounds combination significantly impedes the motility of all cells. Drug safety and tolerability assessments were validated using the in vivo model organism Caenorhabditis elegans, where fairly high doses showed negligible impact on survival, development, or behavioral parameters. Our findings propose that the 1,6-HD and Pitstop-2 combination may usher in the design of potent strategies for treating advanced lung cancer.
Collapse
Affiliation(s)
- Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Caren Rigon Mizdal
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|
3
|
Vaneev AN, Gorelkin PV, Barykin EP, Kolmogorov VS, Timoshenko RV, Mitkevich VA, Petrushanko IY, Varshavskaya KB, Salikhov SV, Klyachko NL, Makarov AA, Erofeev AS. Impact of Antioxidants on Mechanical Properties and ROS Levels of Neuronal Cells Exposed to β-Amyloid Peptide. Chembiochem 2025; 26:e202400786. [PMID: 39548866 DOI: 10.1002/cbic.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024]
Abstract
This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ42) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode. We investigated the effects of the low molecular weight antioxidant N-acetylcysteine (NAC) and the antioxidant enzyme superoxide dismutase 1 (SOD1) on the physiological and mechanical properties of neuronal cells using SICM. Using electrochemical method and SICM, NAC effectively reduces oxidative stress and restores Young's Modulus in SH-SY5Y cells exposed to hydrogen peroxide and Aβ42 oligomers. Our study first examined the influence of SOD1 on intracellular ROS levels in the presence of Aβ oligomers. The investigation into the effects of SOD1 and its nanoparticle form SOD1 on SH-SY5Y cells reveals impacts on mechanical properties and oxidative stress. The combined use of SICM and electrochemical measurements provided a comprehensive understanding of how oxidative stress, including that triggered by the Aβ oligomers affects the mechanical properties of cells.
Collapse
Affiliation(s)
- Alexander N Vaneev
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| | - Petr V Gorelkin
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Vasilii S Kolmogorov
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| | - Roman V Timoshenko
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Ksenia B Varshavskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Sergey V Salikhov
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
| | - Natalia L Klyachko
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Alexander S Erofeev
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| |
Collapse
|
4
|
Chan ET, Kural C. Targeting endocytosis to sensitize cancer cells to programmed cell death. Biochem Soc Trans 2024; 52:1703-1713. [PMID: 39092762 PMCID: PMC11519968 DOI: 10.1042/bst20231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.
Collapse
Affiliation(s)
- Emily T. Chan
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Cömert Kural
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
5
|
Stefanello ST, Mizdal CR, Shahin V. Pitstop-2 Upsets The Integrity of Nuclear Pore Complexes (NPCs) by Interaction with β-Propeller Folds of Npc Scaffold Proteins. Adv Biol (Weinh) 2024; 8:e2300360. [PMID: 38129324 DOI: 10.1002/adbi.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The small compound Pitstop-2 is a recent potent inhibitor of clathrin-mediated endocytosis (CME), widely used in biomedical research areas. In recent years, however, it is observed that it exhibits CME-independent inhibitory effects on nuclear pore complexes (NPCs), the nucleocytoplasmic gatekeepers. NPCs are elaborate proteinaceous transport nano-machineries of crucial physiological importance rendering them novel targets for various medical applications. They mediate all nucleocytoplasmic transport forming a physiologically essential selective nucleocytoplasmic barrier. The direct Pitstop-2 disruptive effects on NPCs manifested themselves at both the structural and functional integrity levels. Moreover, they are massive, acute, and detectable at concentrations equal to CME-inhibitory concentrations. Pitstop-2 inhibits CME by binding to the terminal β-propeller domain of the heavy chain of clathrin. Several NPC scaffold proteins, critical for the structural and functional integrity of the NPC, possess β-propeller folds. Herein, utilizing computational docking analysis, it is demonstrated that Pitstop-2 exhibits particularly high binding affinities to β-propeller folds of NPC scaffold proteins, similar to its binding affinity to the terminal β-propeller domain of clathrin. The authors, therefore, conclude that Pitstop-2 is a potent disruptor of NPCs, an activity which, separately or in synergy with CME inhibition, may be exploited for a myriad of pharmacological applications.
Collapse
Affiliation(s)
- Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Caren Rigon Mizdal
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| |
Collapse
|
6
|
Kiseleva D, Kolmogorov V, Cherednichenko V, Khovantseva U, Bogatyreva A, Markina Y, Gorelkin P, Erofeev A, Markin A. Effect of LDL Extracted from Human Plasma on Membrane Stiffness in Living Endothelial Cells and Macrophages via Scanning Ion Conductance Microscopy. Cells 2024; 13:358. [PMID: 38391971 PMCID: PMC10887070 DOI: 10.3390/cells13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Mechanical properties of living cells play a crucial role in a wide range of biological functions and pathologies, including atherosclerosis. We used low-stress Scanning Ion-Conductance Microscopy (SICM) correlated with confocal imaging and demonstrated the topographical changes and mechanical properties alterations in EA.hy926 and THP-1 exposed to LDL extracted from CVD patients' blood samples. We show that the cells stiffened in the presence of LDL, which also triggered caveolae formation. Endothelial cells accumulated less cholesterol in the form of lipid droplets in comparison to THP-1 cells based on fluorescence intensity data and biochemical analysis; however, the effect on Young's modulus is higher. The cell stiffness is closely connected to the distribution of lipid droplets along the z-axis. In conclusion, we show that the sensitivity of endothelial cells to LDL is higher compared to that of THP-1, triggering changes in the cytoskeleton and membrane stiffness which may result in the increased permeability of the intima layer due to loss of intercellular connections and adhesion.
Collapse
Affiliation(s)
- Diana Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Vasilii Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Vadim Cherednichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Ulyana Khovantseva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Anastasia Bogatyreva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Yuliya Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Petr Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Markin
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
7
|
Dubkov S, Overchenko A, Novikov D, Kolmogorov V, Volkova L, Gorelkin P, Erofeev A, Parkhomenko Y. Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM. Cells 2023; 12:2521. [PMID: 37947599 PMCID: PMC10650894 DOI: 10.3390/cells12212521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
The study of individual cell processes that occur both on their surface and inside is highly interesting for the development of new medical drugs, cytology and cell technologies. This work presents an original technique for fabricating the silver-coated pipette and its use for the cell analysis by combination with surface-enhanced Raman spectroscopy (SERS) and scanning ion-conducting microscopy (SICM). Unlike the majority of other designs, the pipette opening in our case remains uncovered, which is important for SICM. SERS-active Ag nanoparticles on the pipette surface are formed by vacuum-thermal evaporation followed by annealing. An array of nanoparticles had a diameter on the order of 36 nm and spacing of 12 nm. A two-particle model based on Laplace equations is used to calculate a theoretical enhancement factor (EF). The surface morphology of the samples is investigated by scanning electron microscopy while SICM is used to reveal the surface topography, to evaluate Young's modulus of living cells and to control an injection of the SERS-active pipettes into them. A Raman microscope-spectrometer was used to collect characteristic SERS spectra of cells and cell components. Local Raman spectra were obtained from the cytoplasm and nucleus of the same HEK-293 cancer cell. The EF of the SERS-active pipette was 7 × 105. As a result, we demonstrate utilizing the silver-coated pipette for both the SICM study and the molecular composition analysis of cytoplasm and the nucleus of living cells by SERS. The probe localization in cells is successfully achieved.
Collapse
Affiliation(s)
- Sergey Dubkov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Aleksei Overchenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
- Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04109 Leipzig, Germany
| | - Denis Novikov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Vasilii Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lidiya Volkova
- Institute of Nanotechnology of Microelectronics RAS, 115487 Moscow, Russia
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
| | - Yuri Parkhomenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
| |
Collapse
|
8
|
Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N, Korchev Y, Gorelkin P. Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate. Cells 2023; 12:2428. [PMID: 37887273 PMCID: PMC10604991 DOI: 10.3390/cells12202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Mechanical properties of neuronal cells have a key role for growth, generation of traction forces, adhesion, migration, etc. Mechanical properties are regulated by chemical signaling, neurotransmitters, and neuronal ion exchange. Disturbance of chemical signaling is accompanied by several diseases such as ischemia, trauma, and neurodegenerative diseases. It is known that the disturbance of chemical signaling, like that caused by glutamate excitotoxicity, leads to the structural reorganization of the cytoskeleton of neuronal cells and the deviation of native mechanical properties. Thus, to investigate the mechanical properties of living neuronal cells in the presence of glutamate, it is crucial to use noncontact and low-stress methods, which are the advantages of scanning ion-conductance microscopy (SICM). Moreover, a nanopipette may be used for the local delivery of small molecules as well as for a probe. In this work, SICM was used as an advanced technique for the simultaneous local delivery of glutamate and investigation of living neuronal cell morphology and mechanical behavior caused by an excitotoxic effect of glutamate.
Collapse
Affiliation(s)
- Vasilii Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| | - Alexander Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lyubov Gorbacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry Kolesov
- Research Laboratory of SPM, Moscow Polytechnic University, Moscow 107023, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London SW7 2BX, UK
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| |
Collapse
|