1
|
Chen XF, Lin JP, Zhou H, Kang BZ, Nayak R, Gao L, Jiang SS, Wang F. The relationship between the collagen score at the anastomotic site of esophageal squamous cell carcinoma and anastomotic leakage. J Thorac Dis 2024; 16:4515-4524. [PMID: 39144302 PMCID: PMC11320265 DOI: 10.21037/jtd-24-427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Background Anastomotic leakage (AL) has always been one of the most serious complications of esophagectomy with gastric conduit reconstruction. There are many strong risk factors for AL in clinical practice. Notably, the tension at the esophagogastric anastomosis and the blood supply to the gastric conduit directly affect the integrity of the anastomosis. However, there has been a lack of quantitative research on the tension and blood supply of the gastric conduit. Changes in extracellular matrix collagen reflect tension and blood supply, which affect the quality of the anastomosis. This study aimed to establish a quantitative collagen score to describe changes in the collagen structure in the extracellular matrix and to identify patients at high risk of postoperative AL. Methods A retrospective study of 213 patients was conducted. Clinical and pathological data were collected at baseline. Optical imaging of the "donut" specimen at the anastomotic gastric end and collagen feature extraction were performed. Least absolute shrinkage and selection operator (LASSO) regression models were used to select the significant collagen features, compute collagen scores, and validate the predictive efficacy of the collagen scores for ALs. Results LASSO regression analysis revealed three collagen-related parameters in the gastric donuts: histogram mean, histogram variance, and histogram energy. Based on this analysis, we established a formula to calculate the collagen score. The results of the univariate analysis revealed significant differences in the preoperative low albumin values (P=0.002) and collagen scores between the AL and non-AL groups (P=0.001), while the results of the multivariate analysis revealed significant differences in the collagen scores between the AL and non-AL groups (P=0.002). The areas under the curve (AUCs) of the experimental and validation cohorts were 0.978 [95% confidence interval (CI): 0.931-0.996] and 0.900 (95% CI: 0.824-0.951), respectively. Conclusions The collagen score established herein was shown to be related to AL and can be used to predict AL in patients who underwent esophagectomy.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun-Peng Lin
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hang Zhou
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Bing-Zi Kang
- School of Science, Jimei University, Xiamen, China
| | - Rahul Nayak
- Division of Thoracic Surgery, Western University, London, ON, Canada
| | - Lin Gao
- School of Science, Jimei University, Xiamen, China
| | | | - Feng Wang
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
2
|
Li J, Wang D, Zhang C. Establishment of a pathomic-based machine learning model to predict CD276 (B7-H3) expression in colon cancer. Front Oncol 2024; 13:1232192. [PMID: 38260829 PMCID: PMC10802857 DOI: 10.3389/fonc.2023.1232192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024] Open
Abstract
CD276 is a promising prognostic indicator and an attractive therapeutic target in various malignancies. However, current methods for CD276 detection are time-consuming and expensive, limiting extensive studies and applications of CD276. We aimed to develop a pathomic model for CD276 prediction from H&E-stained pathological images, and explore the underlying mechanism of the pathomic features by associating the pathomic model with transcription profiles. A dataset of colon adenocarcinoma (COAD) patients was retrieved from the Cancer Genome Atlas (TCGA) database. The dataset was divided into the training and validation sets according to the ratio of 8:2 by a stratified sampling method. Using the gradient boosting machine (GBM) algorithm, we established a pathomic model to predict CD276 expression in COAD. Univariate and multivariate Cox regression analyses were conducted to assess the predictive performance of the pathomic model for overall survival in COAD. Gene Set Enrichment Analysis (GESA) was performed to explore the underlying biological mechanisms of the pathomic model. The pathomic model formed by three pathomic features for CD276 prediction showed an area under the curve (AUC) of 0.833 (95%CI: 0.784-0.882) in the training set and 0.758 (95%CI: 0.637-0.878) in the validation set, respectively. The calibration curves and Hosmer-Lemeshow goodness of fit test showed that the prediction probability of high/low expression of CD276 was in favorable agreement with the real situation in both the training and validation sets (P=0.176 and 0.255, respectively). The DCA curves suggested that the pathomic model acquired high clinical benefit. All the subjects were categorized into high pathomic score (PS) (PS-H) and low PS (PS-L) groups according to the cutoff value of PS. Univariate and multivariate Cox regression analysis indicated that PS was a risk factor for overall survival in COAD. Furthermore, through GESA analysis, we found several immune and inflammatory-related pathways and genes were associated with the pathomic model. We constructed a pathomics-based machine learning model for CD276 prediction directly from H&E-stained images in COAD. Through integrated analysis of the pathomic model and transcriptomics, the interpretability of the pathomic model provide a theoretical basis for further hypothesis and experimental research.
Collapse
Affiliation(s)
- Jia Li
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, Tianjin, China
| | - Dongxu Wang
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, Tianjin, China
| | - Chenxin Zhang
- Department of General Surgery, The 983rd Hospital of Joint Logistic Support Force of PLA, Tianjin, China
| |
Collapse
|
3
|
Tanaka MD, Geubels BM, Grotenhuis BA, Marijnen CAM, Peters FP, van der Mierden S, Maas M, Couwenberg AM. Validated Pretreatment Prediction Models for Response to Neoadjuvant Therapy in Patients with Rectal Cancer: A Systematic Review and Critical Appraisal. Cancers (Basel) 2023; 15:3945. [PMID: 37568760 PMCID: PMC10417363 DOI: 10.3390/cancers15153945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pretreatment response prediction is crucial to select those patients with rectal cancer who will benefit from organ preservation strategies following (intensified) neoadjuvant therapy and to avoid unnecessary toxicity in those who will not. The combination of individual predictors in multivariable prediction models might improve predictive accuracy. The aim of this systematic review was to summarize and critically appraise validated pretreatment prediction models (other than radiomics-based models or image-based deep learning models) for response to neoadjuvant therapy in patients with rectal cancer and provide evidence-based recommendations for future research. MEDLINE via Ovid, Embase.com, and Scopus were searched for eligible studies published up to November 2022. A total of 5006 studies were screened and 16 were included for data extraction and risk of bias assessment using Prediction model Risk Of Bias Assessment Tool (PROBAST). All selected models were unique and grouped into five predictor categories: clinical, combined, genetics, metabolites, and pathology. Studies generally included patients with intermediate or advanced tumor stages who were treated with neoadjuvant chemoradiotherapy. Evaluated outcomes were pathological complete response and pathological tumor response. All studies were considered to have a high risk of bias and none of the models were externally validated in an independent study. Discriminative performances, estimated with the area under the curve (AUC), ranged per predictor category from 0.60 to 0.70 (clinical), 0.78 to 0.81 (combined), 0.66 to 0.91 (genetics), 0.54 to 0.80 (metabolites), and 0.71 to 0.91 (pathology). Model calibration outcomes were reported in five studies. Two collagen feature-based models showed the best predictive performance (AUCs 0.83-0.91 and good calibration). In conclusion, some pretreatment models for response prediction in rectal cancer show encouraging predictive potential but, given the high risk of bias in these studies, their value should be evaluated in future, well-designed studies.
Collapse
Affiliation(s)
- Max D. Tanaka
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Barbara M. Geubels
- Department of Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Surgery, Catharina Hospital, 5602 ZA Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Brechtje A. Grotenhuis
- Department of Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Corrie A. M. Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Femke P. Peters
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stevie van der Mierden
- Scientific Information Service, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Monique Maas
- GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Alice M. Couwenberg
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
4
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|