1
|
Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. BIORESOURCE TECHNOLOGY 2022; 344:126212. [PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Somayeh Dehhaghi
- Department of Agricultural Extension and Education, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Löser C, Kupsch C, Walther T, Hoffmann A. A new approach for balancing the microbial synthesis of ethyl acetate and other volatile metabolites during aerobic bioreactor cultivations. Eng Life Sci 2021; 21:137-153. [PMID: 33716613 PMCID: PMC7923609 DOI: 10.1002/elsc.202000047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Ethyl acetate is an organic solvent with many industrial applications, currently produced by energy-intensive chemical processes based on fossil carbon resources. Ethyl acetate can be synthesized from renewable sugars by yeasts like Kluyveromyces marxianus in aerobic processes. However, ethyl acetate is highly volatile and thus stripped from aerated cultivation systems which complicate the quantification of the produced ester. Synthesis of volatile metabolites is commonly monitored by repeated analysis of metabolite concentrations in both the gas and liquid phase. In this study, a model-based method for quantifying the synthesis and degradation of volatile metabolites was developed. This quantification of volatiles is solely based on repeatedly measured gas-phase concentrations and allows calculation of reaction rates and yields in high temporal resolution. Parameters required for these calculations were determined in abiotic stripping tests. The developed method was validated for ethyl acetate, ethanol and acetaldehyde which were synthesized by K. marxianus DSM 5422 during an iron-limited batch cultivation; it was shown that the presented method is more precise and less time-consuming than the conventional method. The biomass-specific synthesis rate and the yield of ethyl acetate varied over time and exhibited distinct momentary maxima of 0.50 g g‒1h‒1 and 0.38 g g‒1 at moderate iron limitation.
Collapse
Affiliation(s)
- Christian Löser
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Christian Kupsch
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Thomas Walther
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Andreas Hoffmann
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
3
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
5
|
Romero-García J, Martínez-Patiño C, Ruiz E, Romero I, Castro E. Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bioeth-2016-0002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOlive stones are the main solid byproducts obtained from olive oil production and from table olives production. As a lignocellulosic material, the use of olive stones for ethanol and other chemicals production has been proposed, particularly under the biorefinery concept. As part of such a process, this work deals with the fractionation of the lignocellulosic material by dilute acid autoclave pretreatment at 2% sulfuric acid, 130°C, 60 min and 1:1 liquid to solid ratio. Moreover, the work addresses the fermentation of the liquors obtained after pretreatment. The released sugars are composed mainly by xylose and other hemicellulosic sugars. The fermentation performance of three xylose-fermenting microorganisms, e.g. two Escherichia coli species and Scheffersomyces stipitis, are compared. The study analyzes in a first step the microorganism behavior on synthetic liquors, with a similar composition to that of the real liquors. Finally, and taken into account the results from the previous steps, the real liquor obtained from olive stones pretreatment is fermented. Results show that E. coli MM160 is the best ethanol producer out of the three microorganisms studied. Globally, the pretreatment produced a liquor containing 140 g hemicellulosic sugars/l and requiring firstly dilution by 50% and a detoxification step by overliming. The fermentation of this liquor by E. coli MM160 results in a 25 g ethanol/l solution equivalent to 50 g ethanol/kg olive stone, in spite of 20 g acetic acid/l also present. These results confirm both olive stones and E. coli MM160 as promising feedstock and microorganism for ethanol production.
Collapse
|
6
|
Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK. Continuous ethanol production from sugarcane bagasse hydrolysate at high temperature with cell recycle and in-situ recovery of ethanol. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Gowtham YK, Miller KP, Hodge DB, Henson JM, Harcum SW. Novel two-stage fermentation process for bioethanol production usingSaccharomyces pastorianus. Biotechnol Prog 2014; 30:300-10. [DOI: 10.1002/btpr.1850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yogender Kumar Gowtham
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| | | | - David B. Hodge
- Dept. of Chemical Engineering and Materials Science; Michigan State University; East Lansing MI 48824
- Dept. of Biosystems & Agricultural Engineering; Michigan State University; East Lansing MI 48824
- DOE Great Lakes Bioenergy Research Center; Michigan State University; East Lansing MI 48824
- Dept. of Civil; Environmental and Natural Resource Engineering, Luleå University of Technology; Luleå 97752 Sweden
| | | | - Sarah W. Harcum
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| |
Collapse
|