1
|
Thuy NHL, Tu VL, Thu LNA, Giang TT, Huyen DTK, Loc DH, Tam DNH, Phat NT, Huynh HH, Truyen TTTT, Nguyen QH, Do U, Nguyen D, Dat TV, Minh LHN. Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus 2023; 15:e44574. [PMID: 37790044 PMCID: PMC10545004 DOI: 10.7759/cureus.44574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.
Collapse
Affiliation(s)
- Nguyen Huu Lac Thuy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Nguyen Anh Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Tran Thanh Giang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA
| | - Dao Tang Khanh Huyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duong Hoang Loc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Hong-Han Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN
| | | | - Quang-Hien Nguyen
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Uyen Do
- Science Department, Lone Star College, Houston, USA
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
2
|
Yamamoto M. KAMPOmics: A framework for multidisciplinary and comprehensive research on Japanese traditional medicine. Gene X 2022; 831:146555. [PMID: 35569769 DOI: 10.1016/j.gene.2022.146555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Traditional Japanese medicines, known as "Kampo medicines", are pharmaceutical-grade multi-herbal treatments that are integrated within the modern medical system in Japan. Although basic and clinical research including placebo-controlled double-blind trials is attempting to clarify their effectiveness and mechanisms of action, such studies are seriously limited due to the multi-targeted, multi-component "long-tail" properties of Kampo medicines, which are fundamentally different from modern western therapeutics. However, recent progress in high-throughput analytical technology, coupled with an exponential increase in biomedical information on various levels from molecular biology to clinical "big" data, is enabling us to commence a multidisciplinary and comprehensive investigation of Kampo medicines based on multi-omics, bio-informatics, and systems biology. In addition to deriving an inclusive understanding of the benefits and mechanisms of Kampo medicines, "KAMPOmics" may lead to the development of new principles to control and treat diseases in a systems-oriented manner. Furthermore, elucidation of "sho" and "mibyo" - classical concepts of Kampo, which loosely approximate to the notions of "precise medicine" and "pre-symptomatic aberration", respectively - may contribute to the development of patient-oriented medicine, an area attracting enormous growth and interest in contemporary medicine.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Yoshiwara 3586, Ami, Inashiki, Ibaraki 300-1192, Japan.
| |
Collapse
|
3
|
Xin X, Yang ST. Development of a dual fluorescence system for simultaneous detection of two cell populations in a 3D coculture. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Xin X, Yang ST. A Dual Fluorescent 3-D Multicellular Coculture of Breast Cancer MCF-7 and Fibroblast NIH-3T3 Cells for High Throughput Cancer Drug Screening. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Zang R, Xin X, Zhang F, Li D, Yang ST. An engineered mouse embryonic stem cell model with survivin as a molecular marker and EGFP as the reporter for high throughput screening of embryotoxic chemicals in vitro. Biotechnol Bioeng 2019; 116:1656-1668. [PMID: 30934112 DOI: 10.1002/bit.26977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell test (EST) is the only generally accepted in vitro method for assessing embryotoxicity without animal sacrifice. However, the implementation and application of EST for regulatory embryotoxicity screening are impeded by its technical complexity, long testing period, and limited endpoint data. In this study, a high throughput embryotoxicity screening based on mouse embryonic stem cells (mESCs) expressing enhanced green fluorescent protein (EGFP) driven by a human survivin promoter and a human cytomegalovirus promoter, respectively, was developed. These EGFP expressing mESCs were cultured in three-dimensional (3D) fibrous scaffolds in microbioreactors on a multiwell plate with EGFP fluorescence signals as cell responses to chemicals monitored noninvasively in a high throughput manner. Nine chemicals with known developmental toxicity were used to validate the survivin-based embryotoxicity assay, which showed that strongly embryotoxic compounds such as 5-fluorouracil, retinoic acid, and methotrexate downregulated survivin expression by more than 50% in 3 days, while weakly embryotoxic compounds such as boric acid, methoxyacetic acid, and tetracyclin showed modest downregulation effect and nonembryotoxic saccharin, penicillin G, and acrylamide had negligible downregulation effect on survivin expression, confirming that survivin can be used as a molecular endpoint for high throughput screening of embryotoxicants. The potential developmental toxicity of three Chinese herbal medicines were also evaluated using this assay, demonstrating its application in in vitro developmental toxicity test for drug safety assessment.
Collapse
Affiliation(s)
- Ru Zang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Xin Xin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Ding Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| |
Collapse
|
6
|
Xin X, Wu Y, Zang R, Yang ST. A fluorescent 3D cell culture assay for high throughput screening of cancer drugs down-regulating survivin. J Biotechnol 2019; 289:80-87. [DOI: 10.1016/j.jbiotec.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
|
7
|
Zang R, Zhang X, Sun J, Yang ST. In vitro 3-D multicellular models for cytotoxicity assay and drug screening. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation. Bioprocess Biosyst Eng 2016; 39:925-35. [PMID: 26921102 DOI: 10.1007/s00449-016-1572-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/14/2016] [Indexed: 01/29/2023]
Abstract
In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.
Collapse
|
9
|
Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med 2014; 11:276-284. [PMID: 24915843 DOI: 10.1002/term.1911] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 03/21/2014] [Accepted: 04/20/2014] [Indexed: 12/28/2022]
Abstract
Human amniotic fluid-derived stem cells (hAFSCs) are a novel cell source for generating osteogenic cells to treat bone diseases. Effective induction of osteogenic differentiation from hAFSCs is critical to fulfil their therapeutic potential. In this study, naringin, the main active compound of Rhizoma drynariae (a Chinese herbal medicine), was used to stimulate the proliferation and osteogenic differentiation of hAFSCs. The results showed that naringin enhanced the proliferation and alkaline phosphatase activity (ALP) of hAFSCs in a dose-dependent manner in the range 1-100 µg/ml, while an inhibition effect was observed at 200 µg/ml. Consistently, the calcium content also increased with naringin concentration up to 100 µg/ml. The enhanced osteogenic differentiation of hAFSCs by naringin was further confirmed by the dose-dependent upregulation of marker genes, including osteopontin (OPN) and Collagen I from RT-PCR analysis. The increased osteoprotegerin (OPG) expression and minimal expression of receptor activator of nuclear factor-κB ligand (RANKL) suggested that naringin also inhibited osteoclastogenesis of hAFSCs. In addition, the gene expressions of bone morphogenetic protein 4 (BMP4), runt-related transcription factor 2 (RUNX2), β-catenin and Cyclin D1 also increased significantly, indicating that naringin promotes the osteogenesis of hAFSCs via the BMP and Wnt-β-catenin signalling pathways. These results suggested that naringin can be used to upregulate the osteogenic differentiation of hAFSCs, which could provide an attractive and promising treatment for bone disorders. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Meimei Liu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Liu N, Li Y, Yang ST. Expansion of embryonic stem cells in suspension and fibrous bed bioreactors. J Biotechnol 2014; 178:54-64. [DOI: 10.1016/j.jbiotec.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
|
11
|
Li Y, Liu M, Yan Y, Yang ST. Neural differentiation from pluripotent stem cells: The role of natural and synthetic extracellular matrix. World J Stem Cells 2014; 6:11-23. [PMID: 24567784 PMCID: PMC3927010 DOI: 10.4252/wjsc.v6.i1.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 02/06/2023] Open
Abstract
Neural cells differentiated from pluripotent stem cells (PSCs), including both embryonic stem cells and induced pluripotent stem cells, provide a powerful tool for drug screening, disease modeling and regenerative medicine. High-purity oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) have been derived from PSCs recently due to the advancements in understanding the developmental signaling pathways. Extracellular matrices (ECM) have been shown to play important roles in regulating the survival, proliferation, and differentiation of neural cells. To improve the function and maturation of the derived neural cells from PSCs, understanding the effects of ECM over the course of neural differentiation of PSCs is critical. During neural differentiation of PSCs, the cells are sensitive to the properties of natural or synthetic ECMs, including biochemical composition, biomechanical properties, and structural/topographical features. This review summarizes recent advances in neural differentiation of human PSCs into OPCs and NPCs, focusing on the role of ECM in modulating the composition and function of the differentiated cells. Especially, the importance of using three-dimensional ECM scaffolds to simulate the in vivo microenvironment for neural differentiation of PSCs is highlighted. Future perspectives including the immediate applications of PSC-derived neural cells in drug screening and disease modeling are also discussed.
Collapse
Affiliation(s)
- Yan Li
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Meimei Liu
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Yuanwei Yan
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Shang-Tian Yang
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| |
Collapse
|
12
|
Liu M, Li Y, Yang ST. Curculigoside improves osteogenesis of human amniotic fluid-derived stem cells. Stem Cells Dev 2013; 23:146-54. [PMID: 24007307 DOI: 10.1089/scd.2013.0261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Curculigoside, a phenolic glycoside, is the main active compound of Curculigo orchioides (Amaryllidaceae, rhizome). C. orchioides is a traditional Chinese herbal medicine and has been commonly used to treat orthopedic disorders and bone healing in Asia. This study evaluated the effect of curculigoside on osteogenic differentiation of human amniotic fluid-derived stem cells (hAFSCs). The results showed that curculigoside stimulated alkaline phosphatase activity and calcium deposition of hAFSCs during osteogenic differentiation in a dose-dependent manner (1-100 μg/mL), while the effects were reduced at the higher concentration of 200 μg/mL. From reverse transcriptase-polymerase chain reaction analysis, the osteogenic genes osteopontin (OPN) and Collagen I were upregulated with curculigoside treatment (1-100 μg/mL). Concurrently, the ratio of osteoprotegerin (OPG) to receptor activator of nuclear factor kappa-B ligand (RANKL) was increased, indicating the inhibition of osteoclastogenesis by curculigoside. Moreover, the role of Wnt/β-catenin signaling during curculigoside treatment was revealed by the upregulation of β-catenin and Cyclin D1. In summary, curculigoside improved osteogenesis and inhibited osteoclastogenesis of hAFSCs, suggesting its potential use to regulate hAFSC osteogenic differentiation for treating bone disorders.
Collapse
Affiliation(s)
- Meimei Liu
- 1 William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio
| | | | | |
Collapse
|