1
|
Son B, Kim M, Won H, Jung A, Kim J, Koo Y, Lee NK, Baek SH, Han U, Park CG, Shin H, Gweon B, Joo J, Park HH. Secured delivery of basic fibroblast growth factor using human serum albumin-based protein nanoparticles for enhanced wound healing and regeneration. J Nanobiotechnology 2023; 21:310. [PMID: 37658367 PMCID: PMC10474766 DOI: 10.1186/s12951-023-02053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. RESULTS In this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtained via a simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. CONCLUSION Consequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Minju Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyosub Won
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Yonghoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Korea
| | - Uiyoung Han
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Materials Research Science and Engineering Center, University of California, San Diego, La Jolla, United States.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang Q, Lao X, Huang J, Zhu Z, Pang L, Tang Y, Song Q, Huang J, Deng J, Deng N, Yang Q, Sengupta AM, Xiong L. Corrections to: Soluble production and function of vascular endothelial growth factor/basic fibroblast growth factor complex peptide. Biotechnol Prog 2022; 38:e3246. [PMID: 35257519 DOI: 10.1002/btpr.3246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing Zhang
- The State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xuejun Lao
- Department of Gastrointestinal Surgery, The First Clinical School in Jinan University, Guangzhou, China
| | - Jianhua Huang
- The Clinical Laboratory of the Third Affiliated Hospital in Sun Yat-Sen University, Guangzhou, China
| | - Zhongsong Zhu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Lei Pang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Yong Tang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Qifang Song
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Jiangfang Huang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Jie Deng
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Biomedicine Translational Inst., Jinan University, Guangzhou, China
| | - Qin Yang
- Guangzhou Ming Kang Bioengineering Limited Company, Guangzhou, China
| | - Aditi M Sengupta
- Harvard Medical School, Post Graduate Association, Boston, MA, USA
| | - Likuan Xiong
- Central Laboratory, Baoan Maternal and Child Health Care Hospital, Shenzhen, China
| |
Collapse
|
3
|
Zahedipour F, Zamani P, Jamialahmadi K, Jaafari MR, Sahebkar A. Vaccines targeting angiogenesis in melanoma. Eur J Pharmacol 2021; 912:174565. [PMID: 34656608 DOI: 10.1016/j.ejphar.2021.174565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis has a significant role in metastasis and progression of melanoma. Even small tumors may be susceptible to metastasis and hence lead to a worse outcome in patients with melanoma. One of the anti-angiogenic treatment approaches that is undergoing comprehensive study is specific immunotherapy. While tumor cells are challenging targets for immunotherapy due to their genetic instability and heterogeneity, endothelial cells (ECs) are genetically stable. Therefore, vaccines targeting angiogenesis in melanoma are appropriate choices that target both tumor cells and ECs while capable of inducing strong, anti-tumor immune responses with limited toxicity. The main targets of angiogenesis are VEGFs and their receptors but other potential targets have also been investigated, especially in preclinical studies. Various types of vaccines that target angiogenesis in melanoma have been studied including DNA, peptide, protein, dendritic cell-based, and endothelial cell vaccines. This review outlines a number of target antigens that are important for potential progress in developing vaccines for targeting angiogenesis in melanoma. We also discuss different types of vaccines that have been investigated, delivery mechanisms and popular adjuvants, and suggest ways to improve future clinical outcomes.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Bolten SN, Knoll AS, Li Z, Gellermann P, Pepelanova I, Rinas U, Scheper T. Purification of the human fibroblast growth factor 2 using novel animal-component free materials. J Chromatogr A 2020; 1626:461367. [PMID: 32797846 DOI: 10.1016/j.chroma.2020.461367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022]
Abstract
This paper analyzes the use of animal-component free chromatographic materials for the efficient purification of the human fibroblast growth factor 2 (hFGF-2). hFGF-2 is produced in Escherichia coli and purified via three different chromatography steps, which include a strong cation exchange chromatography as a capture step, followed by heparin affinity chromatography and an anion exchange chromatography as a polishing step. The affinity chromatography step is based on the animal-derived material heparin. Chemically produced ligands provide a viable alternative to animal-derived components in production processes, since they are characterized by a defined structure which leads to reproducible results and a broad range of applications. The alternative ligands can be assigned to adsorber of the mixed-mode chromatography (MMC) and pseudo-affinity chromatography. Eight different animal-component free materials used as adsorbers in MMC or pseudo-affinity chromatography were tested as a substitute for heparin. The MMCs were cation exchangers characterized with further functional residues. The ligands of the pseudo-affinity chromatography were heparin-like ligands which are based on heparin's molecular structure. The alternative methods were tested as a capture step and in combination with another chromatographic step in the purification procedure of hFGF-2. In each downstream step purity, recovery and yield were analysed and compared to the conventional downstream process. Two types of MMC - the column ForesightTM NuviaTM cPrimeTM from Bio-Rad Laboratories and the column HiTrapTM CaptoTM MMC from GE Healthcare Life Sciences - can be regarded as effective animal-component free alternatives to the heparin - based adsorber.
Collapse
Affiliation(s)
- Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Anne-Sophie Knoll
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Zhaopeng Li
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Pia Gellermann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany; Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany.
| |
Collapse
|
5
|
Xie H, Shu C, Bai H, Sun P, Liu H, Qi J, Li S, Ye C, Gao F, Yuan M, Chen Y, Pan M, Yang X, Ma Y. A therapeutic HPV16 E7 vaccine in combination with active anti-FGF-2 immunization synergistically elicits robust antitumor immunity in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102254. [PMID: 32615335 DOI: 10.1016/j.nano.2020.102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
FGF-2 accumulates in many tumor tissues and is closely related to the development of tumor angiogenesis and the immunosuppressive microenvironment. This study aimed to investigate whether active immunization against FGF-2 could modify antitumor immunity and enhance the efficacy of an HPV16 E7-specific therapeutic vaccine. Combined immunization targeting both FGF-2 and E7 significantly suppressed tumor growth, which was accompanied by significantly increased levels of IFN-γ-expressing splenocytes and effector CD8 T cells and decreased levels of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells(MDSCs) in both the spleen and tumor; in addition, the levels of FGF-2 and neovascularization in tumors were decreased in the mice receiving the combined immunization, and tumor cell apoptosis was promoted. The combination of an HPV16 E7-specific vaccine and active immunization against FGF-2 significantly enhances antitumor immune responses in mice with TC-1 tumors, indicating a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Hanghang Xie
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Congyan Shu
- Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Pengyan Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Center for Disease Control and Prevention; Kunming, China
| | - Hongxian Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Sijin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Chao Ye
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Fulan Gao
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Mingcui Yuan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Yongjun Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Manchang Pan
- Department of Burn, The Second Affiliated Hospital, Kunming Medical University,Kunming, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease.
| |
Collapse
|
6
|
Zhang D, Tan QW, Luo JC, Lv Q. Evaluating the angiogenic potential of a novel temperature-sensitive gel scaffold derived from porcine skeletal muscle tissue. ACTA ACUST UNITED AC 2018; 13:055003. [PMID: 29724961 DOI: 10.1088/1748-605x/aac275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our previous study fabricated decellularized porcine muscle tissues (DPMTs) and demonstrated that DPMTs with few cell residues possess highly preserved protein components and good biocompatibility. In the physical state, skeletal muscle equips an abundant vascular network due to the vast demand of energy from aerobic metabolism. Vascular bioactive factors which are rich in skeletal muscle tissues may contribute to the angiogenic effect of DPMTs. However, implanting DPMTs in vivo in a less invasive way is unfeasible. Hence, the purpose of this study was to fabricate DPMTs into hydrogel and investigate the effects of DPMT gel on promoting neovessel formation in vitro and in vivo. The results demonstrated that the surface topographies of the DPMT gel were looser and more homogeneous than the DPMTs. The rates of retained VEGF, bFGF, and PDGF-BB in DPMT gel were almost half of the corresponding content in fresh skeletal muscle tissues. Human umbilical endothelial cells displayed better proliferation ability and enhanced the formation of neovascular loops when seeded on DPMT gel compared to small intestinal submucosa gels at the same concentration of 2% (W/V). Furthermore, the increased neovessel formation was detected after subcutaneous injection of DPMT gel. Taken together, these findings suggested that DPMT gel may possess the potential of promoting neovascular formation.
Collapse
Affiliation(s)
- Di Zhang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China. Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | |
Collapse
|
7
|
The Polyclonal Antibodies Induced by VBP3 Complex Peptide Targeting Angiogenesis and Tumor Suppression. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Taktak-BenAmar A, Morjen M, Ben Mabrouk H, Abdelmaksoud-Dammak R, Guerfali M, Fourati-Masmoudi N, Marrakchi N, Gargouri A. Expression, purification and functionality of bioactive recombinant human vascular endothelial growth factor VEGF 165 in E. coli. AMB Express 2017; 7:33. [PMID: 28168572 PMCID: PMC5293700 DOI: 10.1186/s13568-016-0300-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/27/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is associated with tumour growth and metastasis. Because VEGF is the major player in both angiogenesis and vascular permeability and the most explored factor in angio-inhibitory therapies, many expression procedures have been developed to produce functional VEGF165 in convenient yield. In this study, recombinant human VEGF165 was cloned and expressed in Escherichia coli (BL21)-DE3 cells and large scale production was performed by fermentation. A high yield of active soluble protein was obtained after protein extraction employing both lysozyme and sonication treatment. Inclusion bodies were also isolated from the cell lysate and subjected to a simple protocol of solubilisation and refolding. Single-step purification was performed using nickel affinity chromatography and the purified proteins were able to recognize monoclonal Anti-poly-His antibody. The biological activity of the VEGF165 was successfully tested using the Chicken chorioallantoic membrane assay, wound-healing migration and proliferation assay on human umbilical vein endothelial cells (HUVEC).
Collapse
|
9
|
Cai Y, Yao S, Zhong J, Zhang J, Jiang H, Deng Y, Deng N. Inhibition activity of a disulfide-stabilized diabody against basic fibroblast growth factor in lung cancer. Oncotarget 2017; 8:20187-20197. [PMID: 28423625 PMCID: PMC5386754 DOI: 10.18632/oncotarget.15556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
The over-expression of basic fibroblast growth factor (bFGF) plays a crucial role in the development, invasion and metastasis of lung cancer. Therefore, neutralizing antibodies against bFGF may inhibit the growth of lung cancer. In this study, a Disulfide-stabilized diabody (ds-Diabody) against bFGF was constructed by site-directed mutation and overlap extension PCR (SOE-PCR) at the position of VH44 and VL100 in the scFv. The ds-Diabody was constructed and expressed in Pichia pastoris. We found that the ds-Diabody against bFGF could efficiently suppress the proliferation, migration and invasion of human lung cancer A549 cells in vitro. Moreover, in A549 cells, the ds-Diabody against bFGF could inhibit bFGF-induced activation of downstream signaling regulators, such as phospho-Akt and phospho-MAPK. In the nude mouse xenograft model of lung cancer, the ds-Diabody against bFGF could significantly inhibit tumor growth and decrease the densities of micro-vessels and lymphatic vessels in tumor tissue. Our data indicate that the ds-Diabody against bFGF could effectively suppress the lung cancer growth through blockade of bFGF signaling pathway and inhibition of tumor angiogenesis, which may make it a potential therapeutic candidate antibody drug for human lung cancer therapy.
Collapse
Affiliation(s)
- Yaxiong Cai
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| | - Shuange Yao
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| | - Jiangchuan Zhong
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| | - Jinxia Zhang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| | - Haowu Jiang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| | - Yanrui Deng
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, College of Bioscience and Technology in Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Khan KA, Bicknell R. Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastasis 2015; 33:197-210. [PMID: 26620208 PMCID: PMC4761368 DOI: 10.1007/s10585-015-9769-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a major requirement for tumour formation and development. Anti-angiogenic treatments aim to starve the tumour of nutrients and oxygen and also guard against metastasis. The main anti-angiogenic agents to date have focused on blocking the pro-angiogenic vascular endothelial growth factors (VEGFs). While this approach has seen some success and has provided a proof of principle that such anti-angiogenic agents can be used as treatment, the overall outcome of VEGF blockade has been somewhat disappointing. There is a current need for new strategies in inhibiting tumour angiogenesis; this article will review current and historical examples in blocking various membrane receptors and components of the extracellular matrix important in angiogenesis. Targeting these newly discovered pro-angiogenic proteins could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Roy Bicknell
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|