1
|
Mazzola LT, Kelly-Cirino C. Diagnostics for Nipah virus: a zoonotic pathogen endemic to Southeast Asia. BMJ Glob Health 2019; 4:e001118. [PMID: 30815286 PMCID: PMC6361328 DOI: 10.1136/bmjgh-2018-001118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that, unlike other priority pathogens identified by WHO, is endemic to Southeast Asia. It is most commonly transmitted through exposure to saliva or excrement from the Pteropus fruit bat, or direct contact with intermediate animal hosts, such as pigs. NiV infection causes severe febrile encephalitic disease and/or respiratory disease; treatment options are limited to supportive care. A number of in-house diagnostic assays for NiV using serological and nucleic acid amplification techniques have been developed for NiV and are used in laboratory settings, including some early multiplex panels for differentiation of NiV infection from other febrile diseases. However, given the often rural and remote nature of NiV outbreak settings, there remains a need for rapid diagnostic tests that can be implemented at the point of care. Additionally, more reliable assays for surveillance of communities and livestock will be vital to achieving a better understanding of the ecology of the fruit bat host and transmission risk to other intermediate hosts, enabling implementation of a ‘One Health’ approach to outbreak prevention and the management of this zoonotic disease. An improved understanding of NiV viral diversity and infection kinetics or dynamics will be central to the development of new diagnostics, and access to clinical specimens must be improved to enable effective validation and external quality assessments. Target product profiles for NiV diagnostics should be refined to take into account these outstanding needs.
Collapse
Affiliation(s)
- Laura T Mazzola
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| |
Collapse
|
2
|
Electrostatic Interactions between Hendra Virus Matrix Proteins Are Required for Efficient Virus-Like-Particle Assembly. J Virol 2018; 92:JVI.00143-18. [PMID: 29695428 DOI: 10.1128/jvi.00143-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023] Open
Abstract
Hendra virus (HeV) is a zoonotic paramyxovirus belonging to the genus Henipavirus HeV is highly pathogenic, and it can cause severe neurological and respiratory illnesses in both humans and animals, with an extremely high mortality rate of up to 70%. Among the genes that HeV encodes, the matrix (M) protein forms an integral part of the virion structure and plays critical roles in coordinating viral assembly and budding. Nevertheless, the molecular mechanism of this process is not fully elucidated. Here, we determined the crystal structure of HeV M to 2.5-Å resolution. The dimeric structural configuration of HeV M is similar to that of Newcastle disease virus (NDV) M and is fundamental to protein stability and effective virus-like-particle (VLP) formation. Analysis of the crystal packing revealed a notable interface between the α1 and α2 helices of neighboring HeV M dimers, with key residues sharing degrees of sequence conservation among henipavirus M proteins. Structurally, a network of electrostatic interactions dominates the α1-α2 interactions, involving residues Arg57 from the α1 helix and Asp105 and Glu108 from the α2 helix. The disruption of the α1-α2 interactions using engineered charge reversal substitutions (R57E, R57D, and E108R) resulted in significant reduction or abrogation of VLP production. This phenotype was reversible with an R57E E108R mutant that was designed to partly restore salt bridge contacts. Collectively, our results define and validate previously underappreciated regions of henipavirus M proteins that are crucial for productive VLP assembly.IMPORTANCE Hendra virus is a henipavirus associated with lethal infections in humans. It is classified as a biosafety level 4 (BSL4) agent, and there are currently no preventive or therapeutic treatments available against HeV. Vital to henipavirus pathogenesis, the structural protein M has been implicated in viral assembly and budding, as well as host-virus interactions. However, there is no structural information available for henipavirus M, and the basis of M-driven viral assembly is not fully elucidated. We demonstrate the first three-dimensional structure of a henipavirus M protein. We show the dimeric organization of HeV M as a basic unit for higher-order oligomerization. Additionally, we define key regions/residues of HeV M that are required for productive virus-like-particle formation. These findings provide the first insight into the mechanism of M-driven assembly in henipavirus.
Collapse
|
3
|
Liu J, Jin Y, Feng X, Zou S, Lv G, Zhang Z, Yang Z. Solubility-enhanced gMYL6 fused with a hexa-lysine tag promotes the cytotoxicity of human NK cells. Immunol Lett 2018; 198:66-73. [PMID: 29679602 DOI: 10.1016/j.imlet.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 11/25/2022]
Abstract
Goat myosin light chain 6 (gMYL6) is a constituent of certain extracted immunization-induced goat anti-cancer bioactive peptides (ACBPs). However, little is known about its activity onto NK cells which are the basic cellular attackers in cancer immunotherapy for patients with malignancies. Because of the complicated extraction process and low yield of gMYL6 out of the goat ACBPs' mixture, the Nano-flow liquid chromatography and C-terminal polycationic tag expression strategy were used to identify and enrich the peptide to investigate its bioactivity against cancers/tumors. The solubility-enhanced gMYL6 fused with a hexa-lysine tag showed a capacity of promoting the NK cells' cytotoxicity, making it a novel promising heterogeneous peptide cytokine against cancers.
Collapse
Affiliation(s)
- Juanjuan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaozhou Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sen Zou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangxin Lv
- North China University of Science and Technology, Tangshan, China
| | - Zhifei Zhang
- North China University of Science and Technology, Tangshan, China.
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Kueh CL, Yong CY, Masoomi Dezfooli S, Bhassu S, Tan SG, Tan WS. Virus-like particle of Macrobrachium rosenbergii nodavirus produced in Spodoptera frugiperda (Sf9) cells is distinctive from that produced in Escherichia coli. Biotechnol Prog 2016; 33:549-557. [PMID: 27860432 DOI: 10.1002/btpr.2409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017.
Collapse
Affiliation(s)
- Chare Li Kueh
- Dept. of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chean Yeah Yong
- Dept. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | - Subha Bhassu
- Genetics and Molecular Biology, Centre for Research in Biotechnology for Agriculture, Inst. of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soon Guan Tan
- Dept. of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Dept. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Inst. of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Feng X, Liu J, Fan S, Liu F, Li Y, Jin Y, Bai L, Yang Z. The identification of goat peroxiredoxin-5 and the evaluation and enhancement of its stability by nanoparticle formation. Sci Rep 2016; 6:24467. [PMID: 27074889 PMCID: PMC4830999 DOI: 10.1038/srep24467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022] Open
Abstract
An anticancer bioactive peptide (ACBP), goat peroxiredoxin-5 (gPRDX5), was identified from goat-spleen extract after immunizing the goat with gastric cancer-cell lysate. Its amino acid sequence was determined by employing 2D nano-LC-ESI-LTQ-Orbitrap MS/MS combined with Mascot database search in the goat subset of the Uniprot database. The recombinant gPRDX5 protein was acquired by heterogeneous expression in Escherichia coli. Subsequently, the anti-cancer bioactivity of the peptide was measured by several kinds of tumor cells. The results indicated that the gPRDX5 was a good anti-cancer candidate, especially for killing B16 cells. However, the peptide was found to be unstable without modification with pharmaceutical excipients, which would be a hurdle for future medicinal application. In order to overcome this problem and find an effective way to evaluate the gPRDX5, nanoparticle formation, which has been widely used in drug delivery because of its steadiness in application, less side-effects and enhancement of drug accumulation in target issues, was used here to address the issues. In this work, the gPRDX5 was dispersed into nanoparticles before delivered to B16 cells. By the nanotechnological method, the gPRDX5 was stabilized by a fast and accurate procedure, which suggests a promising way for screening the peptide for further possible medicinal applications.
Collapse
Affiliation(s)
- Xiaozhou Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Juanjuan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yadong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liping Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|