1
|
Beauglehole AC, Roche Recinos D, Pegg CL, Lee YY, Turnbull V, Herrmann S, Marcellin E, Howard CB, Schulz BL. Recent advances in the production of recombinant factor IX: bioprocessing and cell engineering. Crit Rev Biotechnol 2022; 43:484-502. [PMID: 35430942 DOI: 10.1080/07388551.2022.2036691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Aiden C. Beauglehole
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Cassandra L. Pegg
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Victor Turnbull
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Susann Herrmann
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Christopher B. Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L. Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Pilatti L, Mancini Astray R, Rocca MP, Barbosa FF, Jorge SAC, Butler M, de Fátima Pires Augusto E. Purification of rabies virus glycoprotein produced in Drosophila melanogaster S2 cells: An efficient immunoaffinity method. Biotechnol Prog 2020; 36:e3046. [PMID: 32628317 DOI: 10.1002/btpr.3046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 11/12/2022]
Abstract
Most rabies vaccines are based on inactivated virus, which production process demands a high level of biosafety structures. In the past decades, recombinant rabies virus glycoprotein (RVGP) produced in several expression systems has been extensively studied to be used as an alternative vaccine. The immunogenic characteristics of this protein depend on its correct conformation, which is present only after the correct post-translational modifications, typically performed by animal cells. The main challenge of using this protein as a vaccine candidate is to keep its trimeric conformation after the purification process. We describe here a new immunoaffinity chromatography method using a monoclonal antibody for RVGP Site II for purification of recombinant rabies virus glycoprotein expressed on the membrane of Drosophila melanogaster S2 cells. RVGP recovery achieved at least 93%, and characterization analysis showed that the main antigenic proprieties were preserved after purification.
Collapse
Affiliation(s)
- Livia Pilatti
- Science and Technology Institute, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil.,Viral Immunology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | | | | | | - Michael Butler
- National Institute for Biotechnology Research and Training (NIBRT), Dublin, Ireland
| | | |
Collapse
|
3
|
Vatandoost J, Bos MHA. Improved activity and expression of recombinant human factor IX by propeptide engineering. ACTA ACUST UNITED AC 2019; 27:653-660. [PMID: 31637661 DOI: 10.1007/s40199-019-00299-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The main therapeutic strategy for Hemophilia B patients involves the administration of recombinant coagulation factors IX (rFIX). Although there are various approaches to increasing the activity of rFIX, targeted protein engineering of specific residues could result in increased rFIX activity through enhanced γ-carboxylation. Specific amino acids in the propeptide sequence of vitamin K-dependent proteins are known to play a role in the interaction with the enzyme γ-carboxylase. The net hydrophobicity and charge of the γ-carboxylic recognition site (γ-CRS) region in the propeptide are important determinants of γ-carboxylase binding. So the contribution of individual γ-CRS residues to the expression of fully γ-carboxylated and active FIX was studied. METHODS Propeptide residues at positions -14, -13, or - 12 were substituted for equivalent prothrombin amino acids by SEOing PCR. The recombinant FIX variants were transfected and stably expressed in Drosophila S2 cells, and the expression of both total FIX protein and active FIX was assessed. RESULTS While overall the substitutions resulted in an increase of both total FIX protein expression as well as an increase in the portion of active FIX, the highest increase in FIX protein expression, FIX activity, and specific FIX activity was observed following the simultaneous substitution of residues at positions -12, -13, and - 14. The enhanced rFIX activity was further confirmed by enrichment for functional, fully γ-carboxylated rFIX species via barium citrate adsorption. CONCLUSION Our findings indicate that by increasing both the net charge and the net hydrophobicity of the FIX γ-CRS region, the expression of fully γ-carboxylated and as such active FIX is enhanced. Graphical abstract .
Collapse
Affiliation(s)
- Jafar Vatandoost
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Bushehri A, Zare-Abdollahi D, Alavi A, Dehghani A, Mousavimikala M, Khorram Khorshid HR. Identification of PROS1 as a Novel Candidate Gene for Juvenile Retinitis Pigmentosa. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:179-190. [PMID: 32489947 PMCID: PMC7241841 DOI: 10.22088/ijmcm.bums.8.3.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Homozygous mutations of PROS1, encoding vitamin K-dependent protein S (PS), have been reported so far to be associated with purpura fulminans, a characteristic fatal venous thromboembolic disorder. The current work for the first time reports the clinical phenotype in patients with juvenile retinitis pigmentosa harboring a novel likely pathogenic variant in thePROS1 gene. Whole-exome sequencing was performed on probands of a cohort with inherited retinal disease. Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography and spectral-domain optical coherence tomography. Analysis of whole-exome and Sanger sequencing led to the identification of a homozygous missense substitution (c.G122C:p.R41P) in PROS1 in affected individuals from two unrelated consanguineous families of Persian origin which had classic retinitis pigmentosa with no history of venous thromboembolic disorder. This variant was segregated, fully congruous with the phenotype in all family members. Consistently, none of 1000 unrelated healthy individuals from the same population carried the mentioned variant, according to Iranian national genome database (Iranome) and additional in-house exome control data. This study provides inaugural clinical traces for different role of PS as a ligand for TAM receptor-mediated efferocytosis at the retinal pigmented epithelium; the R41P variant may affect proper folding of PS needed for γ-carboxylation and extra-cellular secretion. That conformational change may also lead to defective apoptotic cell phagocytosis resulting in postnatal degeneration of photoreceptors.
Collapse
Affiliation(s)
- Ata Bushehri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Alireza Dehghani
- Department of Ophthalmology, Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | |
Collapse
|