1
|
Duran-Rivera B, Rojas-Rodas F, Silva López W, Gómez-Suárez C, Castro Restrepo D. Enhancing Eritadenine Production in Submerged Cultures of Shiitake ( Lentinula edodes Berk. Pegler) Using Blue LED Light and Activated Charcoal. Revealing Eritadenine's Novel In Vitro Bioherbicidal Activity Against Chrysanthemum morifolium. MYCOBIOLOGY 2024; 52:145-159. [PMID: 38948450 PMCID: PMC11210419 DOI: 10.1080/12298093.2024.2350207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/28/2024] [Indexed: 07/02/2024]
Abstract
Eritadenine from shiitake mushroom is a secondary metabolite with hypocholesterolemic, hypotensive and antiparasitic properties, thus promising for pharmaceutical and agricultural applications. Eritadenine is obtained from submerged mycelial cultures of shiitake, but the actual yields remain unsatisfactory to explore potential applications or industrial-scale production. In this study, green and blue LED lights were tested to increase yields of eritadenine in submerged cultures of shiitake. Notably, blue LEDs increased yields by 13-14 times, reaching 165.7 mg/L, compared to darkness (11.2 mg/L) and green light (12.1 mg/L) (p < 0.05, Tukey test). Nitrogen sources yeast extract (YE) and peptone (at 2 g/L) increased eritadenine production. YE promoted 22.6 mg/L, while peptone 18.3 mg/L. The recovery of eritadenine was evaluated using amberlite and activated charcoal (AC) adsorption isotherms. AC demonstrated the highest adsorption rate, with 75 mg of eritadenine per gram of AC, according to the Freundlich isotherm. The desorption rate reached 93.95% at pH 10. The extract obtained from submerged cultures had eritadenine content of 63.31%, corresponding to 87.86% of recovery, according to HPLC analysis. Furthermore, the novel bioherbicidal potential of eritadenine was tested on in vitro Chrysanthemum morifolium plants. The cultures extract containing eritadenine had a detrimental impact on plant development, generating mortality of 100% at 3%, 0.5%, and 0.25%. Moreover, pure eritadenine exhibited a phytotoxic effect similar than glyphosate on leaves, stems and roots. These findings highlight the significant bioherbicidal properties of eritadenine. Further studies are needed to understand the biosynthetic pathway of eritadenine and its bioherbicidal properties on weeds and illicit crops.
Collapse
Affiliation(s)
- Byron Duran-Rivera
- Unidad de Biotecnología Vegetal, Universidad Católica de Oriente, Rionegro, Colombia
| | - Felipe Rojas-Rodas
- Grupo de Investigación en Innovación Digital y Desarrollo Social, Universidad digital de Antioquia, Medellín, Colombia
| | - Wilber Silva López
- Grupo de Óptica y Espectroscopía, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Crhistian Gómez-Suárez
- Centro de la Ciencia y la Investigación Farmacéutica CECIF, Validaciones y Estabilidades, Sabaneta, Colombia
| | | |
Collapse
|
2
|
Baptista F, Campos J, Costa-Silva V, Pinto AR, Saavedra MJ, Ferreira LM, Rodrigues M, Barros AN. Nutraceutical Potential of Lentinula edodes' Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects. J Fungi (Basel) 2023; 9:1200. [PMID: 38132800 PMCID: PMC10744564 DOI: 10.3390/jof9121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Lentinula edodes, commonly known as shiitake mushroom, is renowned for its potential health advantages. This research delves into the often-overlooked by-product of shiitake cultivation, namely spent mushroom substrate (SMS), to explore its nutraceutical properties. The SMS samples were collected and subjected to different extraction methods, namely short or long agitation, and ultrasound-assisted extractions using different temperatures and distilled water or a 50% (v/v) ethanol as solvents. The extracts were tested for phenolic content (total phenols, ortho-diphenols, and flavonoids), antioxidant capacity (DPPH, 2,2-diphenyl-1 picrylhydrazyl; ABTS, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; and FRAP, ferric reducing antioxidant power), and antibacterial activity. The different extraction methods revealed substantial variations (p < 0.05) in phenolic composition and antioxidant capacity. The highest phenolic content and antioxidant capacity were achieved using 24 h extraction, agitation, 50 °C, and ethanol as the solvent. Furthermore, the extracted compounds displayed antibacterial activity in specific tested bacterial strains. This study highlights the nutraceutical potential of L. edodes' SMS, positioning it as a valuable dietary supplement for animal nutrition, with emphasis on its prebiotic properties. Hence, this research unveils the promising health benefits of SMS in both human and animal nutrition.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Joana Campos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Valéria Costa-Silva
- CECAV—Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Ana Rita Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Luis Mendes Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Miguel Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| |
Collapse
|
3
|
Morales D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals (Basel) 2023; 16:460. [PMID: 36986559 PMCID: PMC10051131 DOI: 10.3390/ph16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Food and agro-industrial by-products provoke a great environmental and economic impact that must be minimized by adding value to these wastes within the framework of circular economy. The relevance of β-glucans obtained from natural sources (cereals, mushrooms, yeasts, algae, etc.), in terms of their interesting biological activities (hypocholesterolemic, hypoglycemic, immune-modulatory, antioxidant, etc.), has been validated by many scientific publications. Since most of these by-products contain high levels of these polysaccharides or can serve as a substrate of β-glucan-producing species, this work reviewed the scientific literature, searching for studies that utilized food and agro-industrial wastes to obtain β-glucan fractions, attending to the applied procedures for extraction and/or purification, the characterization of the glucans and the tested biological activities. Although the results related to β-glucan production or extraction using wastes are promising, it can be concluded that further research on the glucans' characterization, and particularly on the biological activities in vitro and in vivo (apart from antioxidant capacity), is required to reach the final goal of formulating novel nutraceuticals based on these molecules and these raw materials.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; or
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Marillán C, Uquiche E. Extraction of bioactive compounds from Leptocarpha rivularis stems by three-stage sequential supercritical extraction in fixed bed extractor using CO2 and ethanol-modified CO2. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Tejedor-Calvo E, Marco P, Spègel P, Soler-Rivas C. Extraction and trapping of truffle flavoring compounds into food matrices using supercritical CO 2. Food Res Int 2023; 164:112422. [PMID: 36737997 DOI: 10.1016/j.foodres.2022.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
A supercritical fluid extraction methodology was used to extract flavoring and bioactive compounds from truffles. Some parameters such as CO2 flow rate (1-3 mg/mL), extraction time (15-90 min) and different trapping food matrices (grape seed oil, gelatin, agar agar and water) were optimized using response surface methodology to enhance extraction and trapping yields. The optimal conditions (2.27 mg/mL CO2 flow rate, 82.5 min when using 40 °C and 30 MPa, with 1 mL grape seed oil as trapping matrix) obtained with Tuber melanosporum were applied to three different truffle species: Terfezia claveryi, Tuber aestivum and Tuber indicum. A total of 32 metabolites were profiled in the extracts using ultra-high-performance supercritical fluid chromatography coupled to quadrupole time-of-flight mass spectrometry. Compounds such as brassicasterol ergosta-7,22-dienol, oleic and linoleic acid were found at similar amounts in all the extracts but other molecules (e.g. fungal sterols) showed a particular distribution depending on the specie studied and whether a trapping matrix was used at the SFE outlet.
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón - IA2 (CITA-Zaragoza University), Av. Montañana, 930, 50059 Zaragoza, Spain; Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón - IA2 (CITA-Zaragoza University), Av. Montañana, 930, 50059 Zaragoza, Spain
| | - Peter Spègel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Zhao Y, Zhang Z, Wang L, Li W, Du J, Zhang S, Chen X. Hypolipidemic mechanism of Pleurotus eryngii polysaccharides in high-fat diet-induced obese mice based on metabolomics. Front Nutr 2023; 10:1118923. [PMID: 36761225 PMCID: PMC9905146 DOI: 10.3389/fnut.2023.1118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Objective In this study, the structure of Pleurotus eryngii polysaccharides (PEPs) was characterized, and the mechanism of PEP on obesity and hyperlipidemia induced by high-fat diet was evaluated by metabonomic analysis. Methods The structure of PEPs were characterized by monosaccharide composition, Fourier transform infrared spectroscopy and thermogravimetry. In animal experiments, H&E staining was used to observe the morphological difference of epididymal adipose tissue of mice in each group. Ultrahigh performance liquid chromatography (UHPLC)-(QE) HFX -mass spectrometry (MS) was used to analyze the difference of metabolites in serum of mice in each group and the related metabolic pathways. Results The PEPs contained nine monosaccharides: 1.05% fucose, 0.30% arabinose, 17.94% galactose, 53.49% glucose, 1.24% xylose, 23.32% mannose, 1.30% ribose, 0.21%galacturonic acid, and 1.17% glucuronic acid. The PEPs began to degrade at 251°C (T0), while the maximum thermal degradation rate temperature (Tm) appeared at 300°C. The results histopathological observation demonstrated that the PEPs had signifificant hypolipidemic activities. After PEPs intervention, the metabolic profile of mice changed significantly. A total of 29 different metabolites were selected as adjunctive therapy to PEPs, for treatment of obesity and hyperlipidemia-related complications caused by a high-fat diet. These metabolites include amino acids, unsaturated fatty acids, choline, glycerol phospholipids, and other endogenous compounds, which can prevent and treat obesity and hyperlipidemia caused by a high-fat diet by regulating amino acid metabolism, fatty acid metabolism, and changes in metabolic pathways such as that involved in the citric cycle (TCA cycle). Conclusions The presented results indicate that PEPs treatment can alleviate the obesity and hyperlipidemia caused by a high-fat diet and, thus, may be used as a functional food adjuvant, providing a theoretical basis and technical guidance for the prevention and treatment of high-fat diet-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhen Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianming Du
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Shengxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China,*Correspondence: Xuefeng Chen ✉
| |
Collapse
|
7
|
Combining UV Irradiation and Alkaline Deacetylation to Obtain Vitamin D- and Chitosan-Enriched Fractions from Shiitake Mushrooms (Lentinula edodes). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-02998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Dimitrijević M, Stanković M, Nikolić J, Mitić V, Stankov Jovanović V, Stojanović G, Miladinović D. The effect of arsenic, cadmium, mercury, and lead on the genotoxic activity of Boletaceae family mushrooms present in Serbia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:23-35. [PMID: 36445018 DOI: 10.1080/15287394.2022.2150992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to determine accumulation of heavy metals and metalloids which are widely distributed in the environment and in food chain using wild edible mushrooms belonging to the Boletaceae family mushrooms. In addition, methanol extracts of mushrooms were tested for in vitro protective effect by the cytochalasin-B blocked micronucleus (CBMN) assay using chromosome aberrations in human peripheral lymphocytes as a model. The genotoxic activity of methanol extracts prepared at 4 different concentrations (1, 2, 3 or 6 µg/ml) was examined using amifostine and mitomycin C as positive controls. Extracts of species B. regius and B. edulis exhibited the greatest reduction in the frequency of micronuclei (MN). Extract of B. regius at concentrations of 2 µg/ml showed the highest decrease in number of MN. In comparison, extract of mushroom B. edulis at a concentration of 3 µg/ml displayed less reduction. However, as heavy metals and metalloids are found in mushrooms, another aim was to examine whether these agents affected genotoxicity. Principal component analysis (PCA) identified clustering differences between control and heavy metals and metalloids groups and might explain the influence of heavy element content and genotoxic activity in mushrooms.
Collapse
Affiliation(s)
| | - M Stanković
- Nuclear Facilities of Serbia, Vinča, Belgrade, Serbia
| | - J Nikolić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - V Mitić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - V Stankov Jovanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - G Stojanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - D Miladinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
9
|
Khursheed A, Rather MA, Jain V, Wani AR, Rasool S, Nazir R, Malik NA, Majid SA. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 2022; 173:105854. [DOI: 10.1016/j.micpath.2022.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
10
|
Guo J, Zhang M, Fang Z. Valorization of mushroom by-products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5593-5605. [PMID: 35460088 DOI: 10.1002/jsfa.11946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
With the rapid growth of the global economy and the global population, the production of solid waste has increased remarkably. Mushrooms are gaining popularity among researchers for their ability to turn waste into nutrients. However, a large number of by-products are produced during the industrial processing of mushrooms. Traditional waste management, focusing on the utilization and disposal of mushroom by-products, has attracted the attention of researchers. Meanwhile, the circular economy has become a multidisciplinary research field, and the valorization of mushroom by-products is a very important part of circular economy research. Various mushroom by-products of mushroom are reviewed in this paper. By-products are used in food as raw materials or functional components, in livestock and poultry feed after grinding/fermentation, and as electrochemical materials and papermaking materials. The by-products can also be used to produce ethanol and other biological sources of energy, as absorbing substances in sewage treatment, and as fertilizer in soil amendment. Mushroom processing by-products can be applied in various fields. To improve production efficiency, new extraction technology (including supercritical fluid technology and microwave extraction technology) can be adopted to increase the bioactive substance content in the by-products. Choosing appropriate processing temperature, time, and other processing conditions can also enhance product quality. Finally, more research is needed on the cost-effective utilization of the by-products and the feasibility of industrialization. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Lentinula edodes, a Novel Source of Polysaccharides with Antioxidant Power. Antioxidants (Basel) 2022; 11:antiox11091770. [PMID: 36139844 PMCID: PMC9495869 DOI: 10.3390/antiox11091770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The fruiting bodies of edible mushrooms represent an important source of biologically active polysaccharides. In this study, Lentinula edodes crude polysaccharides (LECP) were extracted in hot water, and their antioxidant and antiradical activities were investigated. The antioxidant activity of LECP was investigated against reactive species such as 1,1’-diphenyl-2-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, hydroxyl and superoxide anion radicals, reducing power with EC50 values of 0.51, 0.52, 2.19, 3.59 and 1.73 mg/mL, respectively. Likewise, LECP inhibited the lipid peroxidation induced in methyl linoleate through the formation of conjugated diene hydroperoxide and malondialdehyde. The main sugar composition of LECP includes mannose, galactose, glucose, fucose and glucuronic acid. Characterization by Fourier transform infrared spectroscopy and nuclear magnetic resonance determined that LECP was made up of α and β glycosidic bonds with a backbone of α-D-Glc, →6)-β-D-Glcp-(1→, →6)-α-D-Galp-(1→ and β-D-Manp-(1→ residues. The results showed that LECP can scavenge all reactive species tested in a concentration-dependent manner and with a protective effect in the initial and final stages of lipid peroxidation. The natural antioxidant activity of the LECP that was investigated strengthens the high medicinal and nutritional value of this mushroom.
Collapse
|
12
|
Larypoor M. Investigation of HER-3 gene expression under the influence of carbohydrate biopolymers extract of shiitake and reishi in MCF-7 cell line. Mol Biol Rep 2022; 49:6563-6572. [PMID: 35536497 DOI: 10.1007/s11033-022-07496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Edible-medicinal fungi are mainly used in Asian countries to prevent various diseases. These mushrooms are also used to treat lung diseases and cancer. Ganoderma lucidum and Lentinula edodes are the most important edible-medicinal fungi. The polysaccharides of these fungi are one of the bioactive compounds with anti-cancer properties. OBJECTIVE Evaluation of anti-cancer effects of Shiitake and Reishi polysaccharides. METHODS In this study, fungal polysaccharides were extracted using the hot water method and were purified by Diethylaminoethyl Sephadex A-25 (DEAE-Sephadex A-25) chromatography column and their concentration was measured by phenolic sulfuric acid method. The biological effects of the extracted polysaccharides from Ganoderma lucidum and Lentinula edodes on the MCF-7 cell line were investigated using an MTT assay and then its effects on the expression of the P53 cancer regulatory gene and HER-3 gene were investigated. RESULTS Based on the results, the concentration of Ganoderma lucidum and Lentinula edodes extracted polysaccharides were 0.024 and 0.103 mg/ml, respectively. Polysaccharides of these two fungi increased the expression of the P53 gene and decreased the expression of the HER-3 gene in a dose and time-dependent manner. DISCUSSION Natural biocompatible polysaccharides with anti-cancer properties that are native, are available, and inexpensive, so they can be used as dietary supplements to prevent and help treat cancer.
Collapse
Affiliation(s)
- Mohaddeseh Larypoor
- Faculty of Biological Sciences, Department of Microbiology and Biotechnology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Almeida D, Cardoso RVC, Pereira C, Alves MJ, Ferreira ICFR, Zied DC, Junior WGV, Caitano CEC, Fernandes Â, Barros L. Biochemical Approaches on Commercial Strains of Agaricus subrufescens Growing under Two Environmental Cultivation Conditions. J Fungi (Basel) 2022; 8:jof8060616. [PMID: 35736099 PMCID: PMC9224743 DOI: 10.3390/jof8060616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the present work, the effect of the cultivation process, in the field and under a controlled environment, on biochemical parameters by using commercial strains of A. subrufescens were evaluated. The results obtained revealed that the strains cultivated in the field presented higher levels for most of the parameters evaluated (organic acids (20.5–48.0 g/100 g dw), tocopherols (107.0–198.6 µg/100 g dw), and phenolic acids and related compounds (245.2–359.0 µg/100 g dw and 10.6–23.7 µg/100 g dw, respectively)), except for the carbohydrates (53.4–72.6 g/100 g dw), energetic value (373–380 Kcal/100 g dw), and total free sugars (28.8–43.1 g/100 g dw), parameters in which the strains grown in a controlled environment present better results. For both cultivation systems, similar results were obtained regarding saturated, monounsaturated, and polyunsaturated fatty acids, as well as antioxidant and antimicrobial activities. These data contribute to the knowledge and highlight the characterized strains and the cultivation process, which can be used to obtain ingredients with potential applicability as a source of functional compounds.
Collapse
Affiliation(s)
- Daiana Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Rossana V. C. Cardoso
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
- AquaValor—Centro de Valorização e Transferência de Tecnologia da Água—Associação, Rua Dr. Júlio Martins N° 1, 5400-342 Chaves, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Diego Cunha Zied
- Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Campus Dracena, Universidade Estadual Paulista, São Paulo 17900-000, Brazil;
| | - Wagner G. Vieira Junior
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil; (W.G.V.J.); (C.E.C.C.)
| | - Cinthia E. C. Caitano
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil; (W.G.V.J.); (C.E.C.C.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
14
|
Ibarz-Blanch N, Morales D, Calvo E, Ros-Medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022; 14:nu14091920. [PMID: 35565887 PMCID: PMC9103085 DOI: 10.3390/nu14091920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a major public health problem. Numerous approaches have been developed to lower blood pressure (BP) in hypertensive patients, most of them involving pharmacological treatments. Within this context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive compounds, but also their efficacy depending on consumption time. Although a plethora of studies has investigated food-derived compounds, such as phenolic compounds or peptides and their impact on BP, only a few addressed the relevance of time consumption. However, it is known that BP and its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic compounds can interact with clock genes, which regulate the biological rhythm followed by many physiological processes. Therefore, further research might be carried out to completely elucidate the interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.
Collapse
Affiliation(s)
| | | | - Enrique Calvo
- Correspondence: (E.C.); (F.I.B.); Tel.: +34-977558837 (E.C.)
| | | | | | | | | |
Collapse
|
15
|
Yehia RS. Evaluation of the biological activities of β-glucan isolated from Lentinula edodes. Lett Appl Microbiol 2022; 75:317-329. [PMID: 35482469 DOI: 10.1111/lam.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Lentinula edodes (shiitake) is an edible mushroom that contains many constituents and β-glucan is considered a major polysaccharide. This study, therefore, aimed to characterize β-glucan and evaluate its activities. Fresh fruit bodies of L. edodes were used for β-glucan extraction and followed by analyses via Fourier transform infrared, Nuclear magnetic resonance, and High Performance Liquid Chromatography confirming its characteristic structure. For evaluating biological activities of β-glucan, different concentrations (0.1-3.5 mg ml-1 ) were assessed. The optimal dose was 3.5 mg ml-1 that showed the highest scavenging radical ability (75.3%) confirms antioxidant activity, strong inhibition of the peroxyl radical (80.9%) to inhibit lipid peroxidation, elevation the inhibition percentage of both α-amylase (73.4%) and α-glucosidase (70.3%) indicates the antidiabetic properties, and highest AFB1 reduction (88%) which ensured the aflatoxin-detoxifying ability. In addition, antifungal activity of β-glucan was evaluated to inhibit sporulation process in Aspergillus niger and recorded with minimum inhibitory concentration of 2.5 mg ml-1 and minimum fungicidal concentration of 3 mg ml-1 . In a dose-dependent manner, higher concentration of β-glucan affects viability of tumor cells concomitant induces potent anti-cancer immune responses and inhibited the activity of topoisomerase I which are considered an important target for cancer chemotherapy. Therefore, L. edodes-β-glucan has the potential to act as a suggestive agent for antioxidant, antidiabetic, antifungal activity, and aflatoxin detoxification.
Collapse
Affiliation(s)
- Ramy S Yehia
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Liu X, Hasan KMF, Wei S. Immunological regulation, effects, extraction mechanisms, healthy utilization, and bioactivity of edible fungi: A comprehensive review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| | | | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| |
Collapse
|
17
|
Tejedor-Calvo E, García-Barreda S, Sánchez S, Morte A, Siles-Sánchez MDLN, Soler-Rivas C, Santoyo S, Marco P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022; 11:foods11030298. [PMID: 35159450 PMCID: PMC8834127 DOI: 10.3390/foods11030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
A PLE (pressurized liquid extraction) method was adjusted following a full-factorial experimental design to obtain bioactive-enriched fractions from Tuber aestivum and Terfezia claveryi. Temperature, time and solvent (water, ethanol and ethanol–water 1:1) parameters were investigated. The response variables investigated were: obtained yield and the levels of total carbohydrate (compounds, β-glucans, chitin, proteins, phenolic compounds and sterols). Principal component analysis indicated water solvent and high temperatures as more adequate parameters to extract polysaccharide-rich fractions (up to 68% of content), whereas ethanol was more suitable to extract fungal sterols (up to 12.5% of content). The fractions obtained at optimal conditions (16.7 MPa, 180 °C, 30 min) were able to protect Caco2 cells from free radical exposure, acting as antioxidants, and were able to reduce secretion of pro-inflammatory cytokines in vitro: IL-6 (50%), and TNFα (80% only T. claveryi ethanol extract), as well as reduce high inhibitory activity (T. aestivum IC50: 9.44 mG/mL).
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergi García-Barreda
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Sergio Sánchez
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal, Facultad de Biología, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| | - María de Las Nieves Siles-Sánchez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pedro Marco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| |
Collapse
|
18
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
19
|
Nam M, Choi JY, Kim MS. Metabolic Profiles, Bioactive Compounds, and Antioxidant Capacity in Lentinula edodes Cultivated on Log versus Sawdust Substrates. Biomolecules 2021; 11:1654. [PMID: 34827654 PMCID: PMC8615513 DOI: 10.3390/biom11111654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
Lentinula edodes (shiitake) is a popular nutritious edible mushroom with a desirable aroma and flavor. Traditional cultivation of L. edodes on beds of logs has been replaced by cultivation on sawdust, but the effects of cultivation changes on L. edodes mushrooms have not been well characterized. We determined the metabolic profile, bioactive compounds, and antioxidant capacity in L. edodes grown on log or sawdust substrates. Metabolic profiles of L. edodes extracts were determined by 1H nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry. Principal component analysis score plots from 1H NMR analysis showed clear differences between samples. Concentrations of primary metabolites, especially amino acids, generally decreased in L. edodes grown on logs compared to sawdust. Phenolic compounds showed variations in concentration depending on the cultivation method. Bioactive compounds and their antioxidant capacity were analyzed spectrophotometrically. L. edodes cultivated on logs had high concentrations of bioactive compounds with strong antioxidant capacity compared to L. edodes cultivated on sawdust. Thus, the concentration of primary metabolites was high in L. edodes grown on sawdust, which produces a high growth rate. In contrast, log-cultivated L. edodes, which were similar to wild mushrooms, had high levels of bioactive compounds and high antioxidant capacity. This information is useful for determining optimal cultivation conditions for nutritional and medicinal uses of L. edodes mushrooms.
Collapse
Affiliation(s)
| | | | - Min-Sun Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Korea; (M.N.); (J.Y.C.)
| |
Collapse
|
20
|
Tejedor-Calvo E, García-Barreda S, Sánchez S, Morales D, Soler-Rivas C, Ruiz-Rodriguez A, Sanz MÁ, Garcia AP, Morte A, Marco P. Supercritical CO2 extraction method of aromatic compounds from truffles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhang Q, Ma Q, Wang Y, Wu H, Zou J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci 2021; 13:30. [PMID: 34588414 PMCID: PMC8481554 DOI: 10.1038/s41368-021-00137-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Glucosyltransferases (Gtfs) play critical roles in the etiology and pathogenesis of Streptococcus mutans (S. mutans)- mediated dental caries including early childhood caries. Gtfs enhance the biofilm formation and promotes colonization of cariogenic bacteria by generating biofilm extracellular polysaccharides (EPSs), the key virulence property in the cariogenic process. Therefore, Gtfs have become an appealing target for effective therapeutic interventions that inhibit cariogenic biofilms. Importantly, targeting Gtfs selectively impairs the S. mutans virulence without affecting S. mutans existence or the existence of other species in the oral cavity. Over the past decade, numerous Gtfs inhibitory molecules have been identified, mainly including natural and synthetic compounds and their derivatives, antibodies, and metal ions. These therapeutic agents exert their inhibitory role in inhibiting the expression gtf genes and the activities and secretion of Gtfs enzymes with a wide range of sensitivity and effectiveness. Understanding molecular mechanisms of inhibiting Gtfs will contribute to instructing drug combination strategies, which is more effective for inhibiting Gtfs than one drug or class of drugs. This review highlights our current understanding of Gtfs activities and their potential utility, and discusses challenges and opportunities for future exploration of Gtfs as a therapeutic target.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, USA.
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
HPLC-DAD characterization of phenolic profile and in vitro antioxidant, anticholinesterase, and antidiabetic activities of five mushroom species from Turkey. 3 Biotech 2021; 11:273. [PMID: 34055565 DOI: 10.1007/s13205-021-02819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, Daedalea quercina (L.) Pers., Hydnum repandum L., Inonotus radiatus (Sowerby) P. Karst., Omphalotus olearius (DC.) Singer, and Schizophyllum commune Fr. hexane and methanol extracts were subjected to the spectrophotometric assays for antioxidant and enzyme inhibitory activities, which are linked with human diseases that are very prevalent in recent years. Additionally, phenolic compounds of the mushrooms were quantified by HPLC-DAD. The best antioxidant activity was found in H. repandum methanol extract (IC50: 12.04 ± 0.24 µg/mL) in the β-carotene-linoleic assay; I. radiatus methanol extract in DPPH• (81.22 ± 0.50%), ABTS•+ (IC50: 73.47 ± 0.18 µg/mL), and CUPRAC (A0.50: 88.21 ± 0.02 µg/mL) assays; S. commune hexane extract (53.36 ± 0.89%) in the metal chelating assay. O. olearius hexane extract was found as the best inhibitor against AChE (71.58 ± 0.28%) and BChE (67.30 ± 0.15%). When I. radiatus methanol (95.88 ± 0.74%) and H. repandum hexane (95.75 ± 0.16%) extracts showed close α-amylase inhibitory activity to acarbose (96.68 ± 0.08%), D. quercina methanol extract (70.79 ± 0.34%) had higher α-glucosidase inhibitory activity than acarbose (67.01 ± 2.28%). Among 16 phenolic compounds analyzed, gallic acid (0.02 ± 0.01-0.23 ± 0.01 µg/g) was detected in all studied mushrooms. This study provides that investigated mushrooms can be used for further research, which can lead to the development of new natural remedies to alleviate complications related to oxidative stress, diabetes, and neurological diseases.
Collapse
|
23
|
Morales D, Shetty SA, López-Plaza B, Gómez-Candela C, Smidt H, Marín FR, Soler-Rivas C. Modulation of human intestinal microbiota in a clinical trial by consumption of a β-D-glucan-enriched extract obtained from Lentinula edodes. Eur J Nutr 2021; 60:3249-3265. [PMID: 33580297 DOI: 10.1007/s00394-021-02504-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to evaluate the hypocholesterolemic, immune- and microbiota-modulatory effect of a mushroom extract in hypercholesterolemic subjects. METHODS A randomized, controlled, double-blind, and parallel clinical trial was carried out with subjects from 18 to 65 years old (n = 52) with untreated mild hypercholesterolemia. Volunteers consumed a β-D-glucan-enriched (BGE) mixture (10.4 g/day) obtained from shiitake mushrooms (Lentinula edodes) ensuring a 3.5 g/day of fungal β-D-glucans or a placebo incorporated in three different commercial creams. RESULTS This mixture showed hypocholesterolemic activities in vitro and in animal studies. After eight weeks intervention, no significant differences in lipid- or cholesterol-related parameters were found compared to placebo subjects as well as before and after the BGE mixture administration. No inflammatory or immunomodulatory responses were noticed and no changes in IL-1β, IL-6, TNF-α or oxLDL were recorded. However, consumption of the BGE mixture was safe and managed to achieve the dietary fibre intake recommended as cardiovascular protective diet. Moreover, the BGE mixture modulated the colonic microbiota differently compared to placebo. Microbial community composition varied from before to after the intervention with several genera being positively or negatively correlated with some biomarkers related to cholesterol metabolism. CONCLUSION These results suggested a relation between cholesterol metabolism, microbiota and BGE administration. Nevertheless, the precise significance of this differential modulation was not fully elucidated and requires further studies.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bricia López-Plaza
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Carmen Gómez-Candela
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Francisco Ramón Marín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
24
|
|
25
|
Tejedor-Calvo E, Morales D, Marco P, Sánchez S, Garcia-Barreda S, Smiderle FR, Iacomini M, Villalva M, Santoyo S, Soler-Rivas C. Screening of bioactive compounds in truffles and evaluation of pressurized liquid extractions (PLE) to obtain fractions with biological activities. Food Res Int 2020; 132:109054. [DOI: 10.1016/j.foodres.2020.109054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
|
26
|
Galarce-Bustos O, Fernández-Ponce MT, Montes A, Pereyra C, Casas L, Mantell C, Aranda M. Usage of supercritical fluid techniques to obtain bioactive alkaloid-rich extracts from cherimoya peel and leaves: extract profiles and their correlation with antioxidant properties and acetylcholinesterase and α-glucosidase inhibitory activities. Food Funct 2020; 11:4224-4235. [PMID: 32353090 DOI: 10.1039/d0fo00342e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The agroindustrial sector is highly concerned with regards to reducing the environmental impact of waste from pruning activities (leaves, branches and bark) and from food industry processes (peels and seeds). In this sense, the wastes generated by cherimoya cultivation and processing industries should be contemplated as a valuable source of biologically active compounds. In this work, we have studied the bioactivity of alkaloid-rich Annona cherimola Mill. extracts obtain by means of supercritical fluid extraction techniques. The extracts were obtained from the peel and leaves using the following optimal conditions: 100 bar of pressure, 75 °C and 15% methanol as co-solvent. High antioxidant capacity (5304.23 ± 73.60 to 21 705.20 ± 1069.31 μmol Trolox equivalent per 100 g), and acetylcholinesterase (IC50 = 87.69 ± 3.42 to 515.02 ± 29.25 μg mL-1) and α-glucosidase (IC50 = 1097.76 ± 121.12 to 3206.88 ± 97.06 μg mL-1) inhibitory activities were exhibited by both peel and leaf extracts. Larger alkaloid contents were determined by UHPLC-ESI-MS analysis, with peel extracts presenting a high concentration of N-trans-feruloyl phenethylamine, while leaf extracts were rich in anonine. This work reports novel data on bioactivity of cherimoya peel and leaves and their potential as a source of bioactive compounds.
Collapse
Affiliation(s)
- Oscar Galarce-Bustos
- Department of Preclinical Sciences, Faculty of Medicine, Center of Translational Medicine Scientific and Technological Nucleus (CEMT-BIOREN), University of La Frontera, Temuco, Chile.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics (Basel) 2020; 9:antibiotics9040170. [PMID: 32290036 PMCID: PMC7235868 DOI: 10.3390/antibiotics9040170] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases that are caused by bacteria are an important cause of mortality and morbidity in all regions of the world. Bacterial drug resistance has grown in the last decades, but the rate of discovery of new antibiotics has steadily decreased. Therefore, the search for new effective antibacterial agents has become a top priority. The plant kingdom seems to be a deep well for searching for novel antimicrobial agents. This is due to the many attractive features of plants: they are readily available and cheap, extracts or compounds from plant sources often demonstrate high-level activity against pathogens, and they rarely have severe side effects. The huge variety of plant-derived compounds provides very diverse chemical structures that may supply both the novel mechanisms of antimicrobial action and provide us with new targets within the bacterial cell. In addition, the rapid development of modern biotechnologies opens up the way for obtaining bioactive compounds in environmentally friendly and low-toxic conditions. In this short review, we ask the question: do antibacterial agents derived from plants have a chance to become a panacea against infectious diseases in the "post-antibiotics era".
Collapse
Affiliation(s)
- Cyrill L. Gorlenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Herman Yu. Kiselev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Elena V. Budanova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.A.Z.J.); (L.N.I.); Tel.: +7-495-622-98-43 (A.A.Z.J.); +7-910-472-01-49 (L.N.I.)
| | - Larisa N. Ikryannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
- Correspondence: (A.A.Z.J.); (L.N.I.); Tel.: +7-495-622-98-43 (A.A.Z.J.); +7-910-472-01-49 (L.N.I.)
| |
Collapse
|
28
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
29
|
Morales D, Rutckeviski R, Villalva M, Abreu H, Soler-Rivas C, Santoyo S, Iacomini M, Smiderle FR. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr Polym 2019; 229:115521. [PMID: 31826486 DOI: 10.1016/j.carbpol.2019.115521] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
A polysaccharide-enriched extract obtained from Lentinula edodes was submitted to several purification steps to separate three different D-glucans with β-(1→6), β-(1→3),(1→6) and α-(1→3) linkages, being characterized through GC-MS, FT-IR, NMR, SEC and colorimetric/fluorimetric determinations. Moreover, in vitro hypocholesterolemic, antitumoral, anti-inflammatory and antioxidant activities were also tested. Isolated glucans exerted HMGCR inhibitory activity, but only β-(1→6) and β-(1→3),(1→6) fractions showed DPPH scavenging capacity. Glucans were also able to lower IL-1β and IL-6 secretion by LPS-activated THP-1/M cells and showed cytotoxic effect on a breast cancer cell line that was not observed on normal breast cells. These in vitro results pointed important directions for further in vivo studies, showing different effects of each chemical structure of the isolated glucans from shiitake mushrooms.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Renata Rutckeviski
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| | - Marisol Villalva
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Fhernanda Ribeiro Smiderle
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| |
Collapse
|
30
|
Morales D, Smiderle FR, Villalva M, Abreu H, Rico C, Santoyo S, Iacomini M, Soler-Rivas C. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Morales D, Tabernero M, Largo C, Polo G, Piris AJ, Soler-Rivas C. Effect of traditional and modern culinary processing, bioaccessibility, biosafety and bioavailability of eritadenine, a hypocholesterolemic compound from edible mushrooms. Food Funct 2019; 9:6360-6368. [PMID: 30456394 DOI: 10.1039/c8fo01704b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eritadenine is a hypocholesterolemic compound that is found in several mushroom species such as Lentinula edodes, Marasmius oreades, and Amanita caesarea (1.4, 0.7 and 0.6 mg per g dry weight, respectively). It was synthesized during all developmental stages, being present in higher concentrations in the skin of shiitake fruiting bodies. When subjected to traditional cooking, grilling followed by frying were more adequate methodologies than boiling or microwaving to maintain its levels. Modern culinary processes such as texturization (with agar-agar) and spherification (with alginate) also interfered with its release. Grilling and gelling using gelatin enhanced eritadenine's bioaccessibility in an in vitro digestion model. An animal model (where male and female rats were administered 21 and 10 mg per kg animal per day of eritadenine) indicated that intake of the compound was safe under these concentrations; it reached the liver and reduced the atherogenic index (TC/HDL) in rat sera. Thus, it might be used to design a functional food.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Effect of heat treatments of Lentinula edodes mushroom on eritadenine concentration. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Morales D, Tejedor-Calvo E, Jurado-Chivato N, Polo G, Tabernero M, Ruiz-Rodríguez A, Largo C, Soler-Rivas C. In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and β-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct 2019; 10:7325-7332. [DOI: 10.1039/c9fo01744e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, two shiitake fractions were obtained: the ergosterol-enriched fraction exerted higher in vitro hypocholesterolemic activity and the β-glucan-enriched fraction reduced the cholesterol levels in mice.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Eva Tejedor-Calvo
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Noelia Jurado-Chivato
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Gonzalo Polo
- Departament of Experimental Surgery
- Research Institute Hospital La Paz (IdiPAZ)
- 28046 Madrid
- Spain
| | - María Tabernero
- Departament of Experimental Surgery
- Research Institute Hospital La Paz (IdiPAZ)
- 28046 Madrid
- Spain
- Department of Innovation in Precision Nutrition
| | - Alejandro Ruiz-Rodríguez
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| | - Carlota Largo
- Departament of Experimental Surgery
- Research Institute Hospital La Paz (IdiPAZ)
- 28046 Madrid
- Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods
- Institute of Food Science Research – CIAL (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autónoma de Madrid
| |
Collapse
|
34
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 593] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|