1
|
Salehi M. Evaluating the industrial potential of naturally occurring proteases: A focus on kinetic and thermodynamic parameters. Int J Biol Macromol 2024; 254:127782. [PMID: 37926323 DOI: 10.1016/j.ijbiomac.2023.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Thermodynamic and kinetic parameters, such as enthalpy, entropy, and free energy, are crucial in evaluating enzyme stability and activity. These parameters, including the free energy of activation (ΔG#) and the Gibbs free energy of inactivation (ΔG*), are important for predicting energy requirements and reaction rates. However, relying solely on these parameters is insufficient in selecting an enzyme for industrial processes. Numerous studies have explored the measurement of thermodynamic parameters for proteases. Unfortunately, some of the definitions and calculations of key parameters such as ΔG#, ΔG*, and substrate-binding free energy have contained significant errors. In this study, these mistakes have been addressed and corrected. Additionally, a new parameter called δ, defined as the difference between ΔG* and ΔG#, has been introduced for the first time. It is argued that δ provides a more reliable measure for predicting the potential industrial application of enzymes. The highest calculated value for δ was found to be 39.6 kJ·mol-1 at 55 °C. Furthermore, this study also presents a comprehensive collection and determination of all thermodynamic and kinetic parameters for proteases, providing researchers and professionals in the field with a valuable resource to compare and understand the relationships between these parameters and the industrial potential of enzymes.
Collapse
Affiliation(s)
- Mahmoud Salehi
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous, Iran.
| |
Collapse
|
2
|
Draft Genome Sequence of
Virgibacillus
sp. Strain AGTR, Isolated from Hypersaline Lake Acıgöl in Turkey. Microbiol Resour Announc 2022; 11:e0055522. [PMID: 36043865 PMCID: PMC9584221 DOI: 10.1128/mra.00555-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virgibacillus sp. strain AGTR, which is a haloalkaliphilic microorganism, was isolated from a sediment sample collected in hypersaline Lake Acıgöl in Turkey. It has the potential to produce biotechnologically essential proteases. Here, the whole-genome sequence and its annotations are reported.
Collapse
|
3
|
Li Z, Han Q, Wang K, Song S, Xue Y, Ji X, Zhai J, Huang Y, Zhang S. Ionic liquids as a tunable solvent and modifier for biocatalysis. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2074359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhuang Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Kun Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shaoyu Song
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Green Manufacture, CAS, Beijing, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian, Liaoning, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Purification and Characterization of the Protease from Staphylococcus xylosus A2 Isolated from Harbin Dry Sausages. Foods 2022; 11:foods11081094. [PMID: 35454681 PMCID: PMC9027162 DOI: 10.3390/foods11081094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The protease generated from Staphylococcus (S.) xylosus A2, which was isolated from Harbin dry sausages, was purified and characterized. The molecular weight of the purified protease was approximately 21.5 kDa, and its relative activity reached the highest at pH 6.0 and 50 °C. At pH 4.0−8.0 and temperatures of 20−50 °C, the protease was stable. Its activity was significantly improved by Ca2+ and Zn2+ ions (p < 0.05). The Michaelis constant and maximum velocity of the protease were 2.94 mg/mL and 19.45 U/mL·min, respectively. The thermodynamic parameters analysis suggested that the protease showed better catalytic properties at 40 °C. Moreover, the protease could hydrolyze meat proteins, and obtained hydrolysate is non-cytotoxic to the HEK-293 cells. These findings provide a theoretical basis for understanding the enzymatic characterization of S. xylosus A2 protease and its future application in fermented meat products.
Collapse
|
5
|
Wang H, Liu J, Chen Q, Kong B, Sun F. Biochemical properties of extracellular protease from Staphylococcus epidermidis isolated from Harbin dry sausages and its hydrolysis of meat protein. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Xylooligosaccharides production by crude and partially purified xylanase from Aureobasidium pullulans: Biochemical and thermodynamic properties of the enzymes and their application in xylan hydrolysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Wang H, Wang Q, Xia X, Sun F, Kong B. Biochemical properties of extracellular protease from Staphylococcus carnosus RT6 isolated from Harbin dry sausages, and its hydrolysis of meat proteins. J Food Sci 2021; 86:1642-1655. [PMID: 33928645 DOI: 10.1111/1750-3841.15726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
The characteristics of the extracellular protease, produced by Staphylococcus carnosus RT6 isolated from Harbin dry sausages, and its hydrolysis of meat proteins were investigated. The protease was purified by ammonium sulfate, ion exchange, and gel filtration chromatography to obtain a 20.0 kDa extracellular protease. The protease reached maximal activity at pH 9.0 and 50 °C and was stable at pH 7.0 to 11.0 and 20 to 40 °C. Its protease activity was easily inhibited in the presence of Zn2+ , Fe2+ , and Fe3+ . The enzymatic characterization of the protease revealed a Vmax 49.50 U/ml·min, Km 8.19 mg/ml, and the half-life = 28.06 min, ΔH* d = 114.11 kJ/mol, ΔG* d = 89.24 kJ/mol, and ΔS* d = 77.00 J/mol·K at 50 °C. In addition, the protease hydrolyzed meat protein into small particles and produced soluble peptides. This study provides a basis for understanding the biochemical characteristics of the S. carnosus RT6 protease and its future application for fermented meat products.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Jatsch AS, Ruther J. Acetone application for administration of bioactive substances has no negative effects on longevity, fitness, and sexual communication in a parasitic wasp. PLoS One 2021; 16:e0245698. [PMID: 33471848 PMCID: PMC7816986 DOI: 10.1371/journal.pone.0245698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of defined amounts of bioactive substances is a perseverative problem in physiological studies on insects. Apart from feeding and injection, topical application of solutions of the chemicals is most commonly used for this purpose. The solvents used should be non-toxic and have least possible effects on the studied parameters. Acetone is widely used for administration of chemical substances to insects, but possible side-effects of acetone application on fitness and behavioral parameters have been rarely investigated. Here we study the effects of acetone application (207 nl) on fitness and sexual communication in the parasitic wasp Nasonia giraulti Darling. Application of acetone had neither negative effects on longevity nor on offspring number and offspring sex ratio of treated wasps. Treatment of females hampered courtship and mating of N. giraulti couples neither directly after application nor one day after. Male sex pheromone titers were not influenced by acetone treatment. Three application examples demonstrate that topical acetone application is capable of bringing active amounts of insect hormones, neuromodulators, and biosynthetic precursors even in tiny insects. We advocate the use of acetone as a convenient, conservative, and broadly applicable vehicle for studying the effects of bioactive substances in insects.
Collapse
Affiliation(s)
| | - Joachim Ruther
- Institute for Zoology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Microbiota profiling and screening of the lipase active halotolerant yeasts of the olive brine. World J Microbiol Biotechnol 2021; 37:23. [PMID: 33428003 DOI: 10.1007/s11274-020-02976-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Searching for novel enzymes that could be active in organic solvents has become an area of interest in recent years. Olive brine naturally provides a suitable environment for the survival of halophilic and acidophilic microorganisms and the resulting genome is thought to be a gene source for determining the halophilic and acidophilic proteins that are active in a non-aqueous organic solvent medium, and so it has been used in several biotechnological and industrial applications. In this study, microbial analysis of natural, cracked green olive brine from the southern region of Turkey has been made by next-generation sequencing of the brine metagenome for the first time in the literature. The number of reads assigned to fungal operational taxonomic units was the highest percentage (73.04%) with the dominant representation of Ascomycota phylum (99% of fungi). Bacterial OTU was 3.56% of the reads and Proteobacteria phylum was 65% of the reads. The lipase production capacity of the yeasts that were grown on the media containing elevated concentrations of NaCl (1-3 M) was determined on a Rhodamine B-including medium. Molecular identification of the selected yeasts was performed and 90% of sequenced yeasts had a high level of similarity with Candida diddensiae, whereas 10% showed similarity to Candida boidinii. The hydrolytic lipase activities using olive oil were analyzed and both yeasts showed cell-bound lipase activity at pH 3.0.
Collapse
|
10
|
Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t
1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t
1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.
Collapse
|
11
|
Zheng L, Yu X, Wei C, Qiu L, Yu C, Xing Q, Fan Y, Deng Z. Production and characterization of a novel alkaline protease from a newly isolated Neurospora crassa through solid-state fermentation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Kumar A, Bhakuni K, Venkatesu P. Strategic planning of proteins in ionic liquids: future solvents for the enhanced stability of proteins against multiple stresses. Phys Chem Chem Phys 2019; 21:23269-23282. [PMID: 31621726 DOI: 10.1039/c9cp04772g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ionic liquids (ILs) present a vast number of solvents capable of replacing toxic organic solvents in chemical, biotechnology and biomedical applications. ILs are inexpensive and environmentally friendly as the materials can be recycled conveniently. Chemists use a variety of cation and anion combinations to produce an IL that fits the requirements of the sustainable future through the pursuit of greener chemical processes. As such, the development of various types of ILs has been recognized as the emergence of environmentally friendly solvents to attain enhanced protein stability in vitro. The literature survey reveals that there exist a large number of scholarly articles as well as elegant reviews on protein stability in ILs. Biomolecules have adapted to antagonistic environmental stresses that normally denature proteins, and the mechanism of adaptation that protects the cellular components against denaturation involves the intracellular concentration of co-solvents. In this regard, recent experimental results distinctly demonstrated that ILs are stabilizing proteins against denaturing stresses, and their presence in the cells does not alter protein functional activities. However, a review focusing particularly on the refolding and counteracting effects of the ILs against denatured proteins by multiple stresses is still missing. This perspective unveils the studies that have been conducted to improve protein stabilities with ILs as well as the refolding and counteracting abilities of these ILs against the denatured proteins under the influence of multiple stresses. We believe that ILs can provide significant environmental and economic advantages for biochemical processes in the near future. Essentially, numerous investigations are required to allow us to further explore the stabilizing properties of ILs over proteins.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | | | |
Collapse
|
13
|
Cheng K, Wu Q, Jiang L, Liu M, Li C. Protein stability analysis in ionic liquids by 19F NMR. Anal Bioanal Chem 2019; 411:4929-4935. [DOI: 10.1007/s00216-019-01804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
|