1
|
Lyu S, Cai Z, Yang Q, Liu J, Yu Y, Pan F, Zhang T. Soybean meal peptide Gly-Thr-Tyr-Trp could protect mice from acute alcoholic liver damage: A study of protein-protein interaction and proteomic analysis. Food Chem 2024; 451:139337. [PMID: 38663243 DOI: 10.1016/j.foodchem.2024.139337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
Alcoholic liver disease (ALD) is a serious health threat. Soybean meal peptide (SMP) supplementation may protect against this damage; however, the potential mechanism underlying the specific sequence of SMPs is unclear. Protein-protein interaction and proteomic analyses are effective methods for studying functional ingredients in diseases. This study aimed to investigate the potential mechanism of action of the peptide Gly-Thr-Tyr-Trp (GTYW) on ALD using protein-protein interaction and proteomic analyses. These results demonstrate that GTYW influenced the targets of glutathione metabolism (glutathione-disulfide reductase, glutathione S-transferase pi 1, and glutathione S-transferase mu 2). It also regulated the expression of targets related to energy metabolism and amino acid conversion (trypsin-2, cysteine dioxygenase type-1, and F6SJM7). Amino acid and lipid metabolisms were identified based on Gene Ontology annotation. These results indicate that GTYW might affect alcohol-related liver disease signaling pathways. This study provides evidence of the protective and nutritional benefits of SMPs in ALD treatment.
Collapse
Affiliation(s)
- Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhuanzhang Cai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
2
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
3
|
Wahba MI. Gum tragacanth for immobilization of Bacillus licheniformis protease: Optimization, thermodynamics and application. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Matveeva VG, Bronstein LM. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. NANOMATERIALS 2021; 11:nano11092257. [PMID: 34578573 PMCID: PMC8469579 DOI: 10.3390/nano11092257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
In this short review (Perspective), we identify key features of the performance of biocatalysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles (NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic supports is their easy separation due to the magnetic attraction between magnetic NPs and an external magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers, silica, or some other protective layer. However, in those cases when iron oxide NPs are in close proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy of the performance due to the enzyme-like properties shown in iron oxides. Another important parameter which is discussed in this review is the magnetic support porosity, especially in hierarchical porous supports. In the case of comparatively large pores, which can freely accommodate enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as surface-modifying agents or special enzyme reactor designs can be also influential in the performance of magnetic NP based immobilized enzymes.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
5
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Covalent Immobilization of Proteases on Polylactic Acid for Proteins Hydrolysis and Waste Biomass Protein Content Valorization. Catalysts 2021. [DOI: 10.3390/catal11020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The recovery of the protein component and its transformation into protein hydrolysates, generally carried out chemically, gives great added value to waste biomasses. The production of protein hydrolysates through enzymatic catalysis would guarantee to lower the environmental impact of the process and raise product quality, due to the reproducible formation of low molecular weight peptides, with interesting and often unexplored biological activities. The immobilization of the enzymes represents a good choice in terms of stability, recyclability and reduction of costs. In this context, we covalently linked proteases from Aspergillus oryzae to polylactic acid an eco-friendly biopolymer. The hydrolytic efficiency of immobilized enzymes was assessed testing their stability to temperature and over time, and checking the hydrolysis of model biomasses (casein and bovine serum albumin). Soybean waste extracts were also used as proof of principle.
Collapse
|
7
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|