1
|
Li YA, Sun Y, Zhang Y, Wang X, Dieye Y, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector outperforms alum as an adjuvant, increasing a cross-protective immune response against Glaesserella parasuis. Vet Microbiol 2023; 287:109915. [PMID: 38000209 DOI: 10.1016/j.vetmic.2023.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
The adjuvant and/or vector significantly affect a vaccine's efficacy. Although traditional adjuvants such as alum have contributed to vaccine development, deficiencies in the induction of cellular and mucosal immunity have limited their further promotion. Salmonella vectors have unique advantages for establishing cellular and mucosal immunity due to mucosal pathways of invasion and intracellular parasitism. In addition, Salmonella vectors can activate multiple innate immune pathways, thereby promoting adaptive immune responses. In this work, the attenuated Salmonella enterica serovar Choleraesuis (S. Choleraesuis) vector rSC0016 was used to deliver the conserved protective antigen HPS_06257 of Glaesserella parasuis (G. parasuis), generating a novel recombinant strain rSC0016(pS-HPS_06257). The rSC0016(pS-HPS_06257) can express and deliver the HPS_06257 protein to the lymphatic system of the host. In comparison to HPS_06257 adjuvanted with alum, rSC0016(pS-HPS_06257) significantly increased TLR4 and TLR5 activation in mice as well as the levels of proinflammatory cytokines. In addition, rSC0016 promoted a greater degree of maturation in bone marrow-derived dendritic cells (BMDCs) than alum. The specific humoral, mucosal, and cellular immune responses against HPS_06257 in mice immunized with rSC0016(pS-HPS_06257) were significantly higher than those of HPS_06257 adjuvanted with alum. HPS_06257 delivered by the S. Choleraesuis vector induces a Th1-biased Th1/Th2 mixed immune response, while HPS adjuvanted with alum can only induce a Th2-biased immune response. HPS_06257 adjuvanted with alum only causes opsonophagocytic activity (OPA) responses against a homologous strain (G. parasuis serotype 5, GPS5), whereas rSC0016(pS-HPS_06257) could generate cross-OPA responses against a homologous strain and a heterologous strain (G. parasuis serotype 12, GPS12). Ultimately, HPS_06257 adjuvanted with alum protected mice against lethal doses of GPS5 challenge by 60 % but failed to protect mice against lethal doses of GPS12. In contrast, mice immunized with rSC0016(pS-HPS_06257) had 100 % or 80 % survival when challenged with lethal doses of GPS5 or GPS12, respectively. Altogether, the S. Choleraesuis vector rSC0016 could potentially generate an improved innate immune response and an improved adaptive immunological response compared to the traditional alum adjuvant, offering a novel concept for the development of a universal G. parasuis vaccine.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
2
|
JIA YC, CHEN X, ZHOU YY, YAN P, GUO Y, YIN RL, YUAN J, WANG LX, WANG XZ, YIN RH. Application of mouse model for evaluation of recombinant LpxC and GmhA as novel antigenic vaccine candidates of Glaesserella parasuis serotype 13. J Vet Med Sci 2021; 83:1500-1508. [PMID: 34393140 PMCID: PMC8569868 DOI: 10.1292/jvms.21-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) has been one of the bacteria affecting the large-scale swine industry. Lack of an effective vaccine has limited control of the disease, which has an effect on prevalence. In order to improve the cross-protection of vaccines, development on subunit vaccines has become a hot spot. In this study, we firstly cloned the lpxC and gmhA genes from G. parasuis serotype 13 isolates, and expressed and purified their proteins. The results showed that LpxC and GmhA can stimulate mice to produce IgG antibodies. Through testing the cytokine levels of interleukin 4 (IL-4), IL-10 and interferon-γ (IFN-γ), it is found that recombinant GmhA, the mixed LpxC and GmhA can stimulate the body to produce Th1 and Th2 immune responses, while recombinant LpxC and inactivated bacteria can only produce Th2 immune responses. On the protection rate for mice, recombinant LpxC, GmhA and the mixture of LpxC and GmhA can provide 50%, 50% and 60% protection for lethal dose of G. parasuis infection, respectively. The partial protection achieved by the recombinant LpxC and GmhA supports their potential as novel vaccine candidate antigens against G. parasuis.
Collapse
Affiliation(s)
- Yong C. JIA
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin CHEN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Y. ZHOU
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ping YAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ying GUO
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Rong L. YIN
- Research Academy of Animal Husbandry and Veterinary Medicine
Sciences of Jilin Province, Changchun 130062, China
| | - Jing YUAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Lin X. WANG
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Z. WANG
- Liaoning Agricultural Technical College, Yingkou, 115009,
China
| | - Rong H. YIN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Zhao C, Fang H, Wang J, Zhang S, Zhao X, Li Z, Lin C, Shen Z, Cheng L. Application of fermentation process control to increase l-tryptophan production in Escherichia coli. Biotechnol Prog 2019; 36:e2944. [PMID: 31804750 DOI: 10.1002/btpr.2944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 11/11/2022]
Abstract
In this study, process engineering and process control were applied to increase the production of l-tryptophan using Escherichia coli Dmtr/pta-Y. Different dissolved oxygen (DO) and pH control strategies were applied in l-tryptophan production. DO and pH were maintained at [20% (0-20 hr); 30% (20-40 hr)] and [7.0 (0-20 hr), 6.5 (20-40 hr)], respectively, which increased l-tryptophan production, glucose conversion percentage [g (l-tryptophan)/g (glucose)], and transcription levels of key genes for tryptophan biosynthesis and tryptophan biosynthesis flux, and decreased the accumulation of acetate and transcription levels of genes related to acetate synthesis and acetate synthesis flux. Using E. coli Dmtr/pta-Y with optimized DO [20% (0-20 hr); 30% (20-40 hr)] and pH [7.0 (0-20 hr), 6.5 (20-40 hr)] values, the highest l-tryptophan production (52.57 g/L) and glucose conversion percentage (20.15%) were obtained. The l-tryptophan production was increased by 26.58%, the glucose conversion percentage was increased by 22.64%, and the flux of tryptophan biosynthesis was increased to 21.5% compared with different conditions for DO [50% (0-20 hr), 20% (20-40 hr)] and pH [7.0].
Collapse
Affiliation(s)
- Chunguang Zhao
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,School of Agriculture, Ningxia University, Ningxia Eppen Biotech Co., Ltd, Yinchuan, China
| | - Haitian Fang
- School of Agriculture, Ningxia University, Ningxia Eppen Biotech Co., Ltd, Yinchuan, China
| | - Jing Wang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Shasha Zhang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Xiubao Zhao
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Zengliang Li
- Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Chuwen Lin
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Zhiqiang Shen
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Likun Cheng
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| |
Collapse
|
4
|
Wang J, Shang Q, Zhao C, Zhang S, Li Z, Lin C, Shen Z, Cheng L. Improvement of Streptococcus suis glutamate dehydrogenase expression in Escherichia coli through genetic modification of acetate synthesis pathway. Lett Appl Microbiol 2019; 70:64-70. [PMID: 31665809 DOI: 10.1111/lam.13244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
Escherichia coli generates acetate as an undesirable by-product that has several negative effects on protein expression, and the reduction of acetate accumulation by modifying genes of acetate synthesis pathway can improve the expression of recombinant proteins. In the present study, the effect of phosphotransacetylase (pta) or/and acetate kinase (ackA) deletion on glutamate dehydrogenase (GDH) expression was investigated. The results indicated that the disruptions of pta or/and ackA decreased the acetate accumulation and synthesis of per gram cell, and increased cell density, and GDH expression and synthesis of per gram cell. The pta gene was more important for acetate formation than the ackA gene. Using the strain with deletions of pta-ackA (SSGPA) for GDH expression, acetate accumulation (2·61 g l-1 ) and acetate synthesis of per gram cell (0·229 g g-1 ) were lowest, decreasing by 28·29 and 41·43% compared with those of the parental strain (SSG) respectively. The flux of acetate synthesis (6·6%) was decreased by 72·15% compared with that of SSG, and the highest cell density (11·38 g l-1 ), GDH expression (2·78 mg ml-1 ), and GDH formation of per gram cell (0·2442 mg mg-1 ) were obtained, which were 1·22-, 1·43- and 1·17-times higher than the parental strain respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: Acetate is the key undesirable by-product in Escherichia coli cultivation, and both biomass and production of desired products are increased by the reduction of acetate accumulation. In the present study, the strains with deletions of pta or/and ackA were constructed to reduce the acetate accumulation and improve the GDH expression, and the highest expression level of GDH was obtained using the strain with lesion in pta-ackA that was 1·17-times higher than that of the parental strain. The construction strategy of recombinant E. coli for decreasing the acetate excretion can be used for high expression level of other desired products.
Collapse
Affiliation(s)
- J Wang
- Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China.,Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Q Shang
- Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - C Zhao
- Research and Development Center, Ningxia Eppen Biotech Co. Ltd, Yinchuan, China
| | - S Zhang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co. Ltd, Binzhou, China
| | - Z Li
- Research and Development Center, Ningxia Eppen Biotech Co. Ltd, Yinchuan, China
| | - C Lin
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Research and Development Center, Ningxia Eppen Biotech Co. Ltd, Yinchuan, China
| | - Z Shen
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co. Ltd, Binzhou, China
| | - L Cheng
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co. Ltd, Binzhou, China
| |
Collapse
|