1
|
Fani N, Peshkova M, Bikmulina P, Golroo R, Timashev P, Vosough M. Fabricating the cartilage: recent achievements. Cytotechnology 2023; 75:269-292. [PMID: 37389132 PMCID: PMC10299965 DOI: 10.1007/s10616-023-00582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
The Critical Role of Hypoxia in the Re-Differentiation of Human Articular Chondrocytes. Cells 2022; 11:cells11162553. [PMID: 36010629 PMCID: PMC9406483 DOI: 10.3390/cells11162553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The preservation of the chondrogenic phenotype and hypoxia-related physiological microenvironment are major challenges in the 2D culture of primary human chondrocytes. To address this problem, we develop a 3D culture system generating scaffold-free spheroids from human chondrocytes. Our results highlight the chondrogenic potential of cultured human articular chondrocytes in a 3D system combined with hypoxia independently of the cartilage source. After 14 days of culture, we developed spheroids with homogenous diameter and shape from hyaline cartilage donors. Spheroids generated in hypoxia showed a significantly increased glycosaminoglycans synthesis and up-regulated the expression of SOX9, ACAN, COL2A1, COMP, and SNAI1 compared to those obtained under normoxic conditions. Therefore, we conclude that spheroids developed under hypoxic conditions modulate the expression of chondrogenesis-related genes and native tissue features better than 2D cultures. Thus, this scaffold-free 3D culture system represents a novel in vitro model that can be used for cartilage biology research.
Collapse
|
4
|
Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 2022; 25:99. [PMID: 35088882 PMCID: PMC8809050 DOI: 10.3892/mmr.2022.12615] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA), one of the most common joint diseases, is characterized by fibrosis, rhagadia, ulcers and attrition of articular cartilage due to a number of factors. The etiology of OA remains unclear, but its occurrence has been associated with age, obesity, inflammation, trauma and genetic factors. Inflammatory cytokines are crucial for the occurrence and progression of OA. The intra-articular proinflammatory and anti-inflammatory cytokines jointly maintain a dynamic balance, in accordance with the physiological metabolism of articular cartilage. However, dynamic imbalance between proinflammatory and anti-inflammatory cytokines can cause abnormal metabolism in knee articular cartilage, which leads to deformation, loss and abnormal regeneration, and ultimately destroys the normal structure of the knee joint. The ability of articular cartilage to self-repair once damaged is limited, due to its inability to obtain nutrients from blood vessels, nerves and lymphatic vessels, as well as limitations in the extracellular matrix. There are several disadvantages inherent to conventional repair methods, while cartilage tissue engineering (CTE), which combines proinflammatory and anti-inflammatory cytokines, offers a new therapeutic approach for OA. The aim of the present review was to examine the proinflammatory factors implicated in OA, including IL-1β, TNF-α, IL-6, IL-15, IL-17 and IL-18, as well as the key anti-inflammatory factors reducing OA-related articular damage, including IL-4, insulin-like growth factor and TGF-β. The predominance of proinflammatory over anti-inflammatory cytokine effects ultimately leads to the development of OA. CTE, which employs mesenchymal stem cells and scaffolding technology, may prevent OA by maintaining the homeostasis of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Kang Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Shengsheng Jian
- Department of Orthopedics, Luo Hu Hospital, Shenzhen, Guangdong 518001, P.R. China
| | - Feifei Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yuan Yang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zicai Fu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Huanyu Xie
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Jianyi Xiong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
5
|
Zhu X, Wang Z, Teng F. A review of regulated self-organizing approaches for tissue regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:63-78. [PMID: 34293337 DOI: 10.1016/j.pbiomolbio.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Tissue and organ regeneration is the dynamic process by which a population of cells rearranges into a specific form with specific functions. Traditional tissue regeneration utilizes tissue grafting, cell implantation, and structured scaffolds to achieve clinical efficacy. However, tissue grafting methods face a shortage of donor tissue, while cell implantation may involve leakage of the implanted cells without a supportive 3D matrix. Cell migration, proliferation, and differentiation in structured scaffolds may disorganize and frustrate the artificially pre-designed structures, and sometimes involve immunogenic reactions. To overcome this limitation, the self-organizing properties and innate regenerative capability of tissue/organism formation in the absence of guidance by structured scaffolds has been investigated. This review emphasizes the growing subfield of the regulated self-organizing approach for neotissue formation and describes advances in the subfield using diverse, cutting-edge, inter-disciplinarity technologies. We cohesively summarize the directed self-organization of cells in the micro-engineered cell-ECM system and 3D/4D cell printing. Mathematical modeling of cellular self-organization is also discussed for providing rational guidance to intractable problems in tissue regeneration. It is envisioned that future self-organization approaches integrating biomathematics, micro-nano engineering, and gene circuits developed from synthetic biology will continue to work in concert with self-organizing morphogenesis to enhance rational control during self-organizing in tissue and organ regeneration.
Collapse
Affiliation(s)
- Xiaolu Zhu
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, Jiangsu, 213022, China; Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu, 213022, China; Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu, 213022, China.
| | - Zheng Wang
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, Jiangsu, 213022, China
| | - Fang Teng
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
6
|
Hu H, Liu W, Sun C, Wang Q, Yang W, Zhang Z, Xia Z, Shao Z, Wang B. Endogenous Repair and Regeneration of Injured Articular Cartilage: A Challenging but Promising Therapeutic Strategy. Aging Dis 2021; 12:886-901. [PMID: 34094649 PMCID: PMC8139200 DOI: 10.14336/ad.2020.0902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage (AC) has a very limited intrinsic repair capacity after injury or disease. Although exogenous cell-based regenerative approaches have obtained acceptable outcomes, they are usually associated with complicated procedures, donor-site morbidities and cell differentiation during ex vivo expansion. In recent years, endogenous regenerative strategy by recruiting resident mesenchymal stem/progenitor cells (MSPCs) into the injured sites, as a promising alternative, has gained considerable attention. It takes full advantage of body's own regenerative potential to repair and regenerate injured tissue while avoiding exogenous regenerative approach-associated limitations. Like most tissues, there are also multiple stem-cell niches in AC and its surrounding tissues. These MSPCs have the potential to migrate into injured sites to produce replacement cells under appropriate stimuli. Traditional microfracture procedure employs the concept of MSPCs recruitment usually fails to regenerate normal hyaline cartilage. The reasons for this failure might be attributed to an inadequate number of recruiting cells and adverse local tissue microenvironment after cartilage injury. A strategy that effectively improves local matrix microenvironment and recruits resident MSPCs may enhance the success of endogenous AC regeneration (EACR). In this review, we focused on the reasons why AC cannot regenerate itself in spite of potential self-repair capacity and summarized the latest developments of the three key components in the field of EACR. In addition, we discussed the challenges facing in the present EACR strategy. This review will provide an increasing understanding of EACR and attract more researchers to participate in this promising research arena.
Collapse
Affiliation(s)
- Hongzhi Hu
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijian Liu
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Caixia Sun
- 2Department of Gynecology, General Hospital of the Yangtze River Shipping, Wuhan 430022, China
| | - Qiuyuan Wang
- 3Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, China
| | - Wenbo Yang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ZhiCai Zhang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhidao Xia
- 4Centre for Nanohealth, ILS2, Swansea university Medical school, Swansea, SA2 8PP, UK
| | - Zengwu Shao
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,4Centre for Nanohealth, ILS2, Swansea university Medical school, Swansea, SA2 8PP, UK
| |
Collapse
|
7
|
Cellular Technologies in Traumatology: from Cells to Tissue Engineering. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|