1
|
Klimpel M, Pflüger‐Müller B, Cascallana MA, Schwingal S, Lal NI, Noll T, Pirzas V, Laux H. Perfusion Process Intensification for Lentivirus Production Using a Novel Scale-Down Model. Biotechnol Bioeng 2025; 122:344-360. [PMID: 39535315 PMCID: PMC11718438 DOI: 10.1002/bit.28880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed-)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption. Therefore, it is necessary to develop appropriate small-scale models to reduce development costs. In this work, we present the use of the acoustic wave separation technology in combination with the Ambr 250 high throughput bioreactor system for intensified perfusion process development using stable LV producer cells. The intensified perfusion process developed in the Ambr 250 model, performed at a harvest rate of 3 vessel volumes per day (VVD) and high cell densities, resulted in a 1.4-fold higher cell-specific functional virus yield and 2.8-fold higher volumetric virus yield compared to the control process at a harvest rate of 1 VVD. The findings were verified at bench scale after optimizing the bioreactor set-up, resulting in a 1.4-fold higher cell-specific functional virus yield and 3.1-fold higher volumetric virus yield.
Collapse
Affiliation(s)
| | | | | | - Sarah Schwingal
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Nikki Indresh Lal
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Thomas Noll
- Center for Biotechnology (CeBiTec)University of BielefeldBielefeldGermany
| | - Vicky Pirzas
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Holger Laux
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| |
Collapse
|
2
|
Mao L, Sonbati SM, Schneider JW, Robinson AS. Autophagy and Akt-Stimulated Cellular Proliferation Synergistically Improve Antibody Production in CHO Cells. Biotechnol J 2024; 19:e202400033. [PMID: 39623740 PMCID: PMC11612535 DOI: 10.1002/biot.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
Over the past decade, engineered producer cell lines have led 10-fold increases in antibody yield, based on an improved understanding of the cellular machinery influencing cell health and protein production. With prospects for further production improvements, increased antibody production would enable a significant cost reduction for life-saving therapies. In this study, we strategized methods to increase cell viability and the resulting cell culture duration to improve production lifetimes. By overexpressing the cell surface adenosine A2A receptor (A2AR), the Akt pathway was activated, resulting in improved cellular proliferation. Alternatively, by inducing autophagy through temperature downshift, we were able to significantly enhance cellular-specific productivity, with up to a three-fold increase in total antibody production as well as three-fold higher cell-specific productivity. Interestingly, the expression levels of the autophagy pathway protein Beclin-1 appeared to correlate best with the total antibody production, of autophagy-related proteins examined. Thus, during cell clonal development Beclin-1 levels may serve as a marker to screen for conditions that optimize antibody titer.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | | | - James W. Schneider
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Anne S. Robinson
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Nöbel M, Barry C, MacDonald MA, Baker K, Shave E, Mahler S, Munro T, Martínez VS, Nielsen LK, Marcellin E. Harnessing metabolic plasticity in CHO cells for enhanced perfusion cultivation. Biotechnol Bioeng 2024; 121:1371-1383. [PMID: 38079117 DOI: 10.1002/bit.28613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 04/01/2024]
Abstract
Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.
Collapse
Affiliation(s)
- Matthias Nöbel
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
| | - Michael A MacDonald
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Verónica S Martínez
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| |
Collapse
|
4
|
Zarei M, Ferdosi-Shahandashti E, Badalzadeh M, Kardar GA. Increased Expression Level of Human Blood Clotting Factor VIII Using NS0 Cell Line as a Host Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3772. [PMID: 39220334 PMCID: PMC11364927 DOI: 10.30498/ijb.2024.409915.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Coagulation factor VIII (FVIII) is applied for spontaneous hemorrhaging inhibition and excessive bleeding after trauma in patients with hemophilia A. High-quality human recombinant factor VIII (rFVIII) has been produced relatively in large quantities in cultured mammalian cells. NS0 is one of the most common mammalian cell lines for therapeutic protein production. Production of rFVIII has increased due to low FVIII expression levels and rising demand for hemophilia A prophylactic treatment. Several methods have been developed to prevent cell cycle progression in mammalian cells for increased recombinant protein yields. Objective The aim of the study was to investigate the level of recombinant BDD-FVIII expression in NS0 mouse myeloma cells. Additionally, the study aimed to determine the effects of chemical drugs, Mitomycin C, Lovastatin, and Metformin on the secretion of FVIII through cell cycle arrest. Materials and Methods We cultured NS0 cells and transfected them with the 2 μg pcDNA3-hBDDFVIII plasmid by Lipofectamine 3000. The cells were treated with 10 μg.mL-1 Mitomycin C, 20 μM Lovastatin, and 20 mM Metformin separately. After 24 and 48 hours, the samples were collected and, protein expression was analyzed using RT-PCR, Dot blot, and ELISA. Results A higher protein expression level was observed in treated cells 24h and 48h after treatment with all three drugs. According to real-time PCR, Metformin treatment resulted in the highest expression level within 24 h (P=0.0026), followed by Mitomycin C treatment within 48 h (P=0.0030). Conclusion The NS0 cell line can be regarded as a suitable host for FVIII production. FVIII protein expression level was increased by using Lovastatin, Metformin, and Mitomycin C drugs. Further investigations are suggested, and the potential application of these drugs to increase recombinant protein yield can be used to produce therapeutic proteins in the industry.
Collapse
Affiliation(s)
- Mahboobeh Zarei
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
6
|
Beauglehole AC, Roche Recinos D, Pegg CL, Lee YY, Turnbull V, Herrmann S, Marcellin E, Howard CB, Schulz BL. Recent advances in the production of recombinant factor IX: bioprocessing and cell engineering. Crit Rev Biotechnol 2022; 43:484-502. [PMID: 35430942 DOI: 10.1080/07388551.2022.2036691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Aiden C. Beauglehole
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Cassandra L. Pegg
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Victor Turnbull
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Susann Herrmann
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Christopher B. Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L. Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
7
|
MacDonald MA, Nöbel M, Roche Recinos D, Martínez VS, Schulz BL, Howard CB, Baker K, Shave E, Lee YY, Marcellin E, Mahler S, Nielsen LK, Munro T. Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications. Crit Rev Biotechnol 2021; 42:1099-1115. [PMID: 34844499 DOI: 10.1080/07388551.2021.1998821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Matthias Nöbel
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,CSL Limited, Parkville, Melbourne, Australia
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Benjamin L Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | | | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lars Keld Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,National Biologics Facility, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
8
|
Schulze M, Niemann J, Wijffels RH, Matuszczyk J, Martens DE. Rapid intensification of an established CHO cell fed-batch process. Biotechnol Prog 2021; 38:e3213. [PMID: 34542245 PMCID: PMC9286570 DOI: 10.1002/btpr.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Currently, the mammalian biomanufacturing industry explores process intensification (PI) to meet upcoming demands of biotherapeutics while keeping production flexible but, more importantly, as economic as possible. However, intensified processes often require more development time compared with conventional fed‐batches (FBs) preventing their implementation. Hence, rapid and efficient, yet straightforward strategies for PI are needed. In this study we demonstrate such a strategy for the intensification of an N‐stage FB by implementing N‐1 perfusion cell culture and high inoculum cell densities resulting in a robust intensified FB (iFB). Furthermore, we show successful combination of such an iFB with the addition of productivity enhancers, which has not been reported so far. The conventional CHO cell FB process was step‐wise improved and intensified rapidly in multi‐parallel small‐scale bioreactors using N‐1 perfusion. The iFBs were performed in 15 and 250 ml bioreactors and allowed to evaluate the impact on key process indicators (KPI): the space–time yield (STY) was successfully doubled from 0.28 to 0.55 g/L d, while product quality was maintained. This gain was generated by initially increasing the inoculation density, thus shrinking process time, and second supplementation with butyric acid (BA), which reduced cell growth and enhanced cell‐specific productivity from ~25 to 37 pg/(cell d). Potential impacts of PI on cell metabolism were evaluated using flux balance analysis. Initial metabolic differences between the standard and intensified process were observed but disappeared quickly. This shows that PI can be achieved rapidly for new as well as existing processes without introducing sustained changes in cellular and metabolic behavior.
Collapse
Affiliation(s)
- Markus Schulze
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany.,Bioprocess Engineering, Wageningen University, Wageningen, Netherlands
| | - Julia Niemann
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University, Wageningen, Netherlands.,Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jens Matuszczyk
- Product Development, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
9
|
Alvim RGF, Lima TM, Silva JL, de Oliveira GAP, Castilho LR. Process intensification for the production of yellow fever virus-like particles as potential recombinant vaccine antigen. Biotechnol Bioeng 2021; 118:3581-3592. [PMID: 34143442 DOI: 10.1002/bit.27864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Yellow fever (YF) is a life-threatening viral disease endemic in parts of Africa and Latin America. Although there is a very efficacious vaccine since the 1930s, YF still causes 29,000-60,000 annual deaths. During recent YF outbreaks there were issues of vaccine shortage of the current egg-derived vaccine; rare but fatal vaccine adverse effects occurred; and cases were imported to Asia, where the circulating mosquito vector could potentially start local transmission. Here we investigated the production of YF virus-like particles (VLPs) using stably transfected HEK293 cells. Process intensification was achieved by combining sequential FACS (fluorescence-activated cell sorting) rounds to enrich the stable cell pool in terms of high producers and the use of perfusion processes. At shaken-tube scale, FACS enrichment of cells allowed doubling VLP production, and pseudoperfusion cultivation (with daily medium exchange) further increased VLP production by 9.3-fold as compared to batch operation mode. At perfusion bioreactor scale, the use of an inclined settler as cell retention device showed operational advantages over an ATF system. A one-step steric exclusion chromatography purification allowed significant removal of impurities and is a promising technique for future integration of upstream and downstream operations. Characterization by different techniques confirmed the identity and 3D-structure of the purified VLPs.
Collapse
Affiliation(s)
- Renata G F Alvim
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Túlio M Lima
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,School of Chemistry (EQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Leda R Castilho
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Coronel J, Gränicher G, Sandig V, Noll T, Genzel Y, Reichl U. Application of an Inclined Settler for Cell Culture-Based Influenza A Virus Production in Perfusion Mode. Front Bioeng Biotechnol 2020; 8:672. [PMID: 32714908 PMCID: PMC7343718 DOI: 10.3389/fbioe.2020.00672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses have been successfully propagated using a variety of animal cell lines in batch, fed-batch, and perfusion culture. For suspension cells, most studies reported on membrane-based cell retention devices typically leading to an accumulation of viruses in the bioreactor in perfusion mode. Aiming at continuous virus harvesting for improved productivities, an inclined settler was evaluated for influenza A virus (IAV) production using the avian suspension cell line AGE1.CR.pIX. Inclined settlers present many advantages as they are scalable, robust, and comply with cGMP regulations, e.g., for recombinant protein manufacturing. Perfusion rates up to 3000 L/day have been reported. In our study, successful growth of AGE1.CR.pIX cells up to 50 × 106 cells/mL and a cell retention efficiency exceeding 96% were obtained with the settler cooled to room temperature. No virus retention was observed. A total of 5.4-6.5 × 1013 virions were produced while a control experiment with an ATF system equaled to 1.9 × 1013 virions. For infection at 25 × 106 cells/mL, cell-specific virus yields up to 3474 virions/cell were obtained, about 5-fold higher than for an ATF based cultivation performed as a control (723 virions/cell). Trypsin activity was shown to have a large impact on cell growth dynamics after infection following the cell retention device, especially at a cell concentration of 50 × 106 cells/mL. Further control experiments performed with an acoustic settler showed that virus production was improved with a heat exchanger of the inclined settler operated at 27°C. In summary, cell culture-based production of viruses in perfusion mode with an inclined settler and continuous harvesting can drastically increase IAV yields and possibly the yield of other viruses. To our knowledge, this is the first report to show the potential of this device for viral vaccine production.
Collapse
Affiliation(s)
- Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|