1
|
Behboudi A, Minervini M, Badinger ZS, Haddad WW, Zydney AL. Addition of sodium malonate alters the morphology and increases the critical flux during tangential flow filtration of precipitated immunoglobulins. Protein Sci 2024; 33:e5010. [PMID: 38723172 PMCID: PMC11081521 DOI: 10.1002/pro.5010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Recent studies have demonstrated that one can control the packing density, and in turn the filterability, of protein precipitates by changing the pH and buffer composition of the precipitating solution to increase the structure/order within the precipitate. The objective of this study was to examine the effect of sodium malonate, which is known to enhance protein crystallizability, on the morphology of immunoglobulin precipitates formed using a combination of ZnCl2 and polyethylene glycol. The addition of sodium malonate significantly stabilized the precipitate particles as shown by an increase in melting temperature, as determined by differential scanning calorimetry, and an increase in the enthalpy of interaction, as determined by isothermal titration calorimetry. The sodium malonate also increased the selectivity of the precipitation, significantly reducing the coprecipitation of DNA from a clarified cell culture fluid. The resulting precipitate had a greater packing density and improved filterability, enabling continuous tangential flow filtration with minimal membrane fouling relative to precipitates formed under otherwise identical conditions but in the absence of sodium malonate. These results provide important insights into strategies for controlling precipitate morphology to enhance the performance of precipitation-filtration processes for the purification of therapeutic proteins.
Collapse
Affiliation(s)
- Ali Behboudi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Mirko Minervini
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Zachary S. Badinger
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - William W. Haddad
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Andrew L. Zydney
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Recanati G, Pappenreiter M, Gstoettner C, Scheidl P, Vega ED, Sissolak B, Jungbauer A. Integration of a perfusion reactor and continuous precipitation in an entirely membrane-based process for antibody capture. Eng Life Sci 2023; 23:e2300219. [PMID: 37795344 PMCID: PMC10545976 DOI: 10.1002/elsc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
Continuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl2 precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.
Collapse
Affiliation(s)
- Gabriele Recanati
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Magdalena Pappenreiter
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Innovation ManagementBilfinger Life Science GmbHSalzburgAustria
| | - Christoph Gstoettner
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Patrick Scheidl
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Elena Domínguez Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Bernhard Sissolak
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
3
|
Li Z, Chen J, Martinez-Fonts K, Rauscher M, Rivera S, Welsh J, Kandula S. Cationic polymer precipitation for enhanced impurity removal in downstream processing. Biotechnol Bioeng 2023. [PMID: 37148495 DOI: 10.1002/bit.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation-depth filtration and the current platform process for the purification of biologics.
Collapse
Affiliation(s)
- Zhao Li
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Justin Chen
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kirby Martinez-Fonts
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Michael Rauscher
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shannon Rivera
- Analytical Research and Development Mass Spectrometry, Merck & Co., Inc., Rahway, New Jersey, USA
| | - John Welsh
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sunitha Kandula
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
4
|
Minervini M, Zydney AL. Effect of module geometry on the sustainable flux during microfiltration of precipitated IgG. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Recanati G, Coca-Whiteford R, Scheidl P, Sissolak B, Jungbauer A. Redissolution of recombinant antibodies precipitated by ZnCl2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Process Analytical Technology for Precipitation Process Integration into Biologics Manufacturing towards Autonomous Operation—mAb Case Study. Processes (Basel) 2021. [DOI: 10.3390/pr9030488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The integration of real time release testing into an advanced process control (APC) concept in combination with digital twins accelerates the process towards autonomous operation. In order to implement this, on the one hand, measurement technology is required that is capable of measuring relevant process data online, and on the other hand, a suitable model must be available to calculate new process parameters from this data, which are then used for process control. Therefore, the feasibility of online measurement techniques including Raman-spectroscopy, attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), diode array detector (DAD) and fluorescence is demonstrated within the framework of the process analytical technology (PAT) initiative. The best result is achieved by Raman, which reliably detected mAb concentration (R2 of 0.93) and purity (R2 of 0.85) in real time, followed by DAD. Furthermore, the combination of DAD and Raman has been investigated, which provides a promising extension due to the orthogonal measurement methods and higher process robustness. The combination led to a prediction for concentration with a R2 of 0.90 ± 3.9% and for purity of 0.72 ± 4.9%. These data are used to run simulation studies to show the feasibility of process control with a suitable digital twin within the APC concept.
Collapse
|