1
|
Stanisheuski S, Ebrahimi A, Vaidya KA, Jang HS, Yang L, Eddins AJ, Marean-Reardon C, Franco MC, Maier CS. Thermal inkjet makes label-free single-cell proteomics accessible and easy. Front Chem 2024; 12:1428547. [PMID: 39233922 PMCID: PMC11371764 DOI: 10.3389/fchem.2024.1428547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.
Collapse
Affiliation(s)
| | - Arpa Ebrahimi
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Kavi Aashish Vaidya
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | | | - Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Alex Jordan Eddins
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | |
Collapse
|
2
|
Peterman EL, Ploessl DS, Galloway KE. Accelerating Diverse Cell-Based Therapies Through Scalable Design. Annu Rev Chem Biomol Eng 2024; 15:267-292. [PMID: 38594944 DOI: 10.1146/annurev-chembioeng-100722-121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
Collapse
Affiliation(s)
- Emma L Peterman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Deon S Ploessl
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
3
|
Chakrabarti L, Savery J, Mpindi JP, Klover J, Li L, Zhu J. Simplifying stable CHO cell line generation with high probability of monoclonality by using microfluidic dispensing as an alternative to fluorescence activated cell sorting. Biotechnol Prog 2024; 40:e3441. [PMID: 38462762 DOI: 10.1002/btpr.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Single cell cloning is a critical step for cell line development (CLD) for therapeutic protein production, with proof of monoclonality being compulsorily sought in regulatory filings. Among the different single cell deposition technologies, we found that fluorescence activated cell sorting (FACS) offers high probability of monoclonality and can allow selective enrichment of the producer cells. However, FACS instruments are expensive and resource-intensive, have a large footprint, require highly skilled operators and take hours for setup, thereby complicating the cell line generation process. With the aim of finding an easy-to-use alternative to FACS, we identified a flow cytometry-based microfluidic cell dispenser, which presents a single cell sorting solution for biopharmaceutical CLD. The microfluidic cell dispenser is small, budget-friendly, easy-to-use, requires lower-cost consumables, permits flow cytometry-enabled multiparametric target cell enrichment and offers fast and gentle single cell dispensing into multiwell plates. Following comprehensive evaluation, we found that single cell deposition by the microfluidic cell dispenser resulted in >99% probability of monoclonality for production cell lines. Moreover, the clonally derived producer cell lines generated from the microfluidic cell dispenser demonstrated comparable or improved growth profiles and production capability compared to the FACS derived cell lines. Taken together, microfluidic cell dispensing can serve as a cost-effective, efficient and convenient alternative to FACS, simplifying the biopharmaceutical CLD platform with significant reductions in both scientist time and running costs.
Collapse
Affiliation(s)
- Lina Chakrabarti
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - James Savery
- Machine Learning & AI, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - John Patrick Mpindi
- Biostatistics, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Judith Klover
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Lina Li
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Jie Zhu
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
4
|
Cheng G, Kuan CY, Lou KW, Ho YP. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313935. [PMID: 38379512 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chit Yau Kuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kuan Wen Lou
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Broussau S, Lytvyn V, Simoneau M, Guilbault C, Leclerc M, Nazemi-Moghaddam N, Coulombe N, Elahi SM, McComb S, Gilbert R. Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol Ther Methods Clin Dev 2023; 29:40-57. [PMID: 36936448 PMCID: PMC10018046 DOI: 10.1016/j.omtm.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Lentiviral vectors (LVs) are important for cell therapy because of their capacity to stably modify the genome after integration. This study describes a novel and relatively simple approach to generate packaging cells and producer clones for self-inactivating (SIN) LVs pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). A novel gene regulation system, based on the combination of the cumate and coumermycin induction systems, was developed to ensure tight control for the expression of cytotoxic packaging elements. To accelerate clone isolation and ensure monoclonality, the packaging genes were transfected simultaneously into human embryonic kidney cells (293SF-3F6) previously engineered with the induction system, and clones were isolated after limiting dilution into nanowell arrays using a robotic cell picking instrument with scanning capability. The method's effectiveness to isolate colonies derived from single cells was demonstrated using mixed populations of cells labeled with two different fluorescent markers. Because the recipient cell line grew in suspension culture, and all the procedures were performed without serum, the resulting clones were readily adaptable to serum-free suspension culture. The best producer clone produced LVs expressing GFP at a titer of 2.3 × 108 transduction units (TU)/mL in the culture medium under batch mode without concentration.
Collapse
Affiliation(s)
- Sophie Broussau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Simoneau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Claire Guilbault
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Leclerc
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nathalie Coulombe
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Scott McComb
- Department of Immunology, Human Health Therapeutics Research Centre, National Research Council, Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Département de Génie chimique, Université Laval, Québec, QC G1V 0A6, Canada
- Corresponding author: Rénald Gilbert, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada.
| |
Collapse
|
6
|
Han HJ, Kim DH, Baik JY. A splinkerette PCR-based genome walking technique for the identification of transgene integration sites in CHO cells. J Biotechnol 2023:S0168-1656(23)00105-0. [PMID: 37257509 DOI: 10.1016/j.jbiotec.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Identification of recombinant gene integrations sites in the Chinese hamster ovary (CHO) cell genome is increasingly important to assure monoclonality. While next-generation sequencing (NGS) is commonly used for the gene integration site analysis, it is a time-consuming and costly technique as it analyzes the entire genome. Hence, simple, easy, and inexpensive methods to analyze transgene insertion sites are necessary. To selectively capture the integration site of transgene in the CHO genome, we applied splinkerette-PCR (spPCR). SpPCR is an adaptor ligation-based method using splinkerette adaptors that have a stable hairpin loop. Restriction enzymes with high frequencies in the CHO genome were chosen using a Python script and used for the in vitro spPCR assay development. After testing on two CHO housekeeping genes with known loci, the spPCR-based genome walking technique was successfully applied to recombinant CHO cells to identify the transgene integration site. Finally, the comparison with NGS methods exhibited that the time and cost required for the analysis can be substantially reduced. Taken together, the established technique would aid the stable cell line development process by providing a rapid and cost-effective method for transgene integration site analysis.
Collapse
Affiliation(s)
- Hye-Jin Han
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea
| | - Dae Hoon Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea.
| |
Collapse
|
7
|
Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening Strategies for High-Yield Chinese Hamster Ovary Cell Clones. Front Bioeng Biotechnol 2022; 10:858478. [PMID: 35782513 PMCID: PMC9247297 DOI: 10.3389/fbioe.2022.858478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian expression system for recombinant expression of therapeutic proteins in the pharmaceutical industry. The development of high-yield stable cell lines requires processes of transfection, selection, screening and adaptation, among which the screening process requires tremendous time and determines the level of forming highly productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major question prior to industrial manufacturing. Cell line development (CLD) is one of the most critical steps in the production of recombinant therapeutic proteins. Generation of high-yield cell clones is mainly based on the time-consuming, laborious process of selection and screening. With the increase in recombinant therapeutic proteins expressed by CHO cells, CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation and improvement of productivity, clonality and stability. With the development of modern analysis and testing technologies, various screening methods have been used for CLD to enhance the selection efficiency of high-yield clonal cells. This review provides a comprehensive overview on preliminary screening methods for high-yield cell pool based on drug selective pressure. Moreover, we focus on high throughput methods for isolating high-yield cell clones and increasing the productivity and stability, as well as new screening strategies used for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| |
Collapse
|