1
|
Jian X, Li C, Feng X. Strategies for modulating transglycosylation activity, substrate specificity, and product polymerization degree of engineered transglycosylases. Crit Rev Biotechnol 2023; 43:1284-1298. [PMID: 36154438 DOI: 10.1080/07388551.2022.2105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Glycosides are widely used in many fields due to their favorable biological activity. The traditional plant extractions and chemical methods for glycosides production are limited by environmentally unfriendly, laborious protecting group strategies and low yields. Alternatively, enzymatic glycosylation has drawn special attention due to its mild reaction conditions, high catalytic efficiency, and specific stereo-/regioselectivity. Glycosyltransferases (GTs) and retaining glycoside hydrolases (rGHs) are two major enzymes for the formation of glycosidic linkages. Therein GTs generally use nucleotide phosphate activated donors. In contrast, GHs can use broader simple and affordable glycosyl donors, showing great potential in industrial applications. However, most rGHs mainly show hydrolysis activity and only a few rGHs, namely non-Leloir transglycosylases (TGs), innately present strong transglycosylation activities. To address this problem, various strategies have recently been developed to successfully tailor rGHs to alleviate their hydrolysis activity and obtain the engineered TGs. This review summarizes the current modification strategies in TGs engineering, with a special focus on transglycosylation activity enhancement, substrate specificity modulation, and product polymerization degree distribution, which provides a reference for exploiting the transglycosylation potentials of rGHs.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
2
|
Improvement of Fucosylated Oligosaccharides Synthesis by α-L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System. Appl Biochem Biotechnol 2021; 193:3553-3569. [PMID: 34312785 DOI: 10.1007/s12010-021-03628-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023]
Abstract
The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90-95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.
Collapse
|
3
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Hamed AA, Khedr M, Abdelraof M. Activation of LacZ gene in Escherichia coli DH5α via α-complementation mechanism for β-galactosidase production and its biochemical characterizations. J Genet Eng Biotechnol 2020; 18:80. [PMID: 33263861 PMCID: PMC7710787 DOI: 10.1186/s43141-020-00096-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023]
Abstract
Background Plasmid propagation in recombination strains such as Escherichia coli DH5α is regarded as a beneficial instrument for stable amplification of the DNA materials. Here, we show trans-conjugation of pGEM-T cloning vector (modified Promega PCR product cloning vector with tra genes, transposable element (Tn5)) and M13 sequence via α-complementation mechanism in order to activate β-d-galactosidase gene in DH5α strain (non-lactose-fermenting host). Results Trans-conjugation with pGEM-T allows correction of LacZ gene deletion through Tn5, and successful trans-conjugants in DH5α host cells can be able to produce active enzyme, thus described as lactose fermenting strain. The intracellular β-galactosidase was subjected to precipitation by ammonium sulfate and subsequently gel filtration, and the purified enzyme showed a molecular weight of approximately 72-kDa sodium dodecyl sulfate-polyacrylamid gel electrophoresis. The purified enzyme activity showed an optimal pH and temperature of 7.5 and 40 °C, respectively; it had a high stability within pH 6–8.5 and moderate thermal stability up to 50 °C. Conclusion Trans-conjugant of E. coli DH5α- lacZ∆M15 was successfully implemented. UV mutagenesis of the potent trans-conjugant isolate provides an improvement of the enzyme productivity. The enzymatic competitive inhibition by d-galactose and hydrolysis of lactose at ambient temperatures could make this enzyme a promising candidate for use in the dairy industry.
Collapse
Affiliation(s)
- Ahmed A Hamed
- Microbial Chemistry Department, Genetic engineering and Biotechnology research Division, National Research Centre, El-Buhouth St, Dokki, Cairo, 12622, Egypt
| | - Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Genetic engineering and Biotechnology research Division, National Research Centre, El-Buhouth St, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
5
|
Abstract
β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20). These enzymes catalyze hydrolysis of terminal, non-reducing N-acetylhexosamine residues, notably N-acetylglucosamine or N-acetylgalactosamine, in N-acetyl-β-D-hexosaminides. In nature, bacterial β-N-acetylhexosaminidases are mainly involved in cell wall peptidoglycan synthesis, analogously, fungal β-N-acetylhexosaminidases act on cell wall chitin. The enzymes work via a distinct substrate-assisted mechanism that utilizes the 2-acetamido group as nucleophile. Curiously, the β-N-acetylhexosaminidases possess an inherent trans-glycosylation ability which is potentially useful for biocatalytic synthesis of functional carbohydrates, including biomimetic synthesis of human milk oligosaccharides and other glycan-functionalized compounds. In this review, we summarize the reaction engineering approaches (donor substrate activation, additives, and reaction conditions) that have proven useful for enhancing trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. We provide comprehensive overviews of reported synthesis reactions with GH20 enzymes, including tables that list the specific enzyme used, donor and acceptor substrates, reaction conditions, and details of the products and yields obtained. We also describe the active site traits and mutations that appear to favor trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. Finally, we discuss novel protein engineering strategies and suggest potential “hotspots” for mutations to promote trans-glycosylation activity in GH20 for efficient synthesis of specific functional carbohydrates and other glyco-engineered products.
Collapse
|
6
|
Tavares MR, Bláhová M, Sedláková L, Elling L, Pelantová H, Konefał R, Etrych T, Křen V, Bojarová P, Chytil P. High-Affinity N-(2-Hydroxypropyl)methacrylamide Copolymers with Tailored N-Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules 2020; 21:641-652. [PMID: 31904940 DOI: 10.1021/acs.biomac.9b01370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Acetyllactosamine (LacNAc; Galβ4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by β-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Markéta Bláhová
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Lieselotte Sedláková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering , Czech Technical University in Prague , Sítná sq. 3105 , CZ-272 01 Kladno , Czech Republic
| | - Lothar Elling
- Institute of Biotechnology and Helmholtz Institute for Biomedical Engineering , RWTH Aachen , Pauwelstr. 20 , D-52079 Aachen , Germany
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering , Czech Technical University in Prague , Sítná sq. 3105 , CZ-272 01 Kladno , Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| |
Collapse
|
7
|
Abstract
Immobilization techniques are generally based on reusing enzymes in industrial applications to reduce costs and improve enzyme properties. These techniques have been developing for decades, and many methods for immobilizing enzymes have been designed. To find a better immobilization method, it is necessary to review the recently developed methods and have a clear overview of the advantages and limitations of each method. This review introduces the recently reported immobilization methods and discusses the improvements in enzyme properties by different methods. Among the techniques to improve enzyme properties, metal–organic frameworks, which have diverse structures, abundant organic ligands and metal nodes, offer a promising platform.
Collapse
|
8
|
|
9
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Improvement of the transfucosylation activity of α-L-fucosidase from Thermotoga maritima for the synthesis of fucosylated oligosaccharides in the presence of calcium and sodium. Extremophiles 2018; 22:889-894. [PMID: 30088105 DOI: 10.1007/s00792-018-1045-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023]
Abstract
The influence of CaCl2 and NaCl in the hydrolytic activity and the influence of CaCl2 in the synthesis of fucosylated oligosaccharides using α-L-fucosidase from Thermotoga maritima were evaluated. The hydrolytic activity of α-L-fucosidase from Thermotoga maritima displayed a maximum increase of 67% in the presence of 0.8 M NaCl with water activity (aw) of 0.9672 and of 138% in the presence of 1.1 M CaCl2 (aw 0.9581). In addition, the hydrolytic activity was higher when using CaCl2 compared to NaCl at aw of 0.8956, 0.9581 and 0.9672. On the other hand, the effect of CaCl2 in the synthesis of fucosylated oligosaccharides using 4-nitrophenyl-fucose as donor substrate and lactose as acceptor was studied. In these reactions, the presence of 1.1 M CaCl2 favored the rate of transfucosylation, and improved the yield of synthesis duplicating and triplicating it with lactose concentrations of 58 and 146 mM, respectively. CaCl2 did not significatively affect hydrolysis rate in these reactions. The combination of the activating effect of CaCl2, the decrement in aw and lactose concentration had a synergistic effect favoring the synthesis of fucosylated oligosaccharides.
Collapse
Affiliation(s)
- Francisco Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Sergio Alatorre-Santamaría
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Gabriela Rodríguez-Serrano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. Hidalgo Poniente 46, Col. La Estación, CP 52006, Lerma de Villada, Edo. de México, Mexico
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
10
|
Synthesis and characterization of novel astragalin galactosides using β-galactosidase from Bacillus circulans. Enzyme Microb Technol 2017; 103:59-67. [DOI: 10.1016/j.enzmictec.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 01/18/2023]
|
11
|
Catalytic activity and structural stability of three different Bacillus enzymes in water/organic co-solvent mixtures. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Happe M, Kouadio M, Treanor C, Sawall JP, Fornage A, Sugnaux M, Fischer F. Size selectivity in lipase catalysed tetrol acylation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Zeuner B, Jers C, Mikkelsen JD, Meyer AS. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9615-31. [PMID: 25208138 DOI: 10.1021/jf502619p] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and β-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark , Building 229, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
15
|
Zeuner B, Riisager A, Mikkelsen JD, Meyer AS. Improvement of trans-sialylation versus hydrolysis activity of an engineered sialidase from Trypanosoma rangeli by use of co-solvents. Biotechnol Lett 2014; 36:1315-20. [DOI: 10.1007/s10529-014-1488-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
|
16
|
Urrutia P, Mateo C, Guisan J, Wilson L, Illanes A. Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Karan R, Capes MD, DasSarma P, DasSarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 2013; 13:3. [PMID: 23320757 PMCID: PMC3556326 DOI: 10.1186/1472-6750-13-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 01/18/2023] Open
Abstract
Background Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures. Results Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol. Conclusion The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
18
|
Kamerke C, Pattky M, Huhn C, Elling L. Synthesis of UDP-activated oligosaccharides with commercial β-galactosidase from Bacillus circulans under microwave irradiation. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6391-6398. [PMID: 22676418 DOI: 10.1021/jf301156v] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synthesis of galacto-oligosaccharides (GOS) catalyzed by a novel commercial preparation of β-galactosidase from Bacillus circulans (Biolactase) was studied, and the products were characterized by MS and NMR. Using 400 g/L lactose and 1.5 enzyme units per milliliter, the maximum GOS yield, measured by HPAEC-PAD analysis, was 165 g/L (41% w/w of total carbohydrates in the mixture). The major transgalactosylation products were the trisaccharide Gal-β(1→4)-Gal-β(1→4)-Glc and the tetrasaccharide Gal-β(1→4)-Gal-β(1→4)-Gal-β(1→4)-Glc. The GOS yield increased to 198 g/L (49.4% w/w of total carbohydrates) using a higher enzyme concentration (15 U/mL), which minimized the enzyme inactivation under reaction conditions. Using skim milk (with a lactose concentration of 46 g/L), the enzyme also displayed transgalactosylation activity: maximum GOS yield accounted for 15.4% (7.1 g/L), which was obtained at 50% lactose conversion.
Collapse
|
20
|
Bridiau N, Maugard T. Bacillus circulans β-galactosidase catalyses the synthesis of N-acetyl-lactosamine in a hydro-organic medium via a steady-state ordered Bi Bi reaction mechanism. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Pérez-Sánchez M, Sandoval M, Hernáiz MJ. Bio-solvents change regioselectivity in the synthesis of disaccharides using Biolacta β-galactosidase. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Karan R, Capes MD, DasSarma S. Function and biotechnology of extremophilic enzymes in low water activity. AQUATIC BIOSYSTEMS 2012; 8:4. [PMID: 22480329 PMCID: PMC3310334 DOI: 10.1186/2046-9063-8-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Melinda D Capes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| |
Collapse
|