1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Halgrain M, Bernardet N, Hennequet-Antier C, Hincke M, Réhault-Godbert S. RNA-seq analysis of the active chick embryo chorioallantoic membrane reveals genes that encode proteins assigned to ion transport and innate immunity. Genomics 2023; 115:110564. [PMID: 36642281 DOI: 10.1016/j.ygeno.2023.110564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The chicken chorioallantoic membrane (CAM) is an extraembryonic membrane that is vital for the embryo. It undergoes profound cell differentiation between 11 and 15 days of embryonic incubation (EID), which corresponds to the acquisition of its physiological functions. To gain insight into the functional genes that accompany these biological changes, RNA sequencing of the CAM at EID11 and EID15 was performed. Results showed that CAM maturation coincides with the overexpression of 4225 genes, including many genes encoding proteins involved in mineral metabolism, innate immunity, homeostasis, angiogenesis, reproduction, and regulation of hypoxia. Of these genes, some exhibit variability in expression depending on the chicken breed (broiler versus layer breeds). Besides the interest of these results for the poultry sector, the identification of new functional gene candidates opens additional research avenues in the field of developmental biology.
Collapse
Affiliation(s)
| | | | - Christelle Hennequet-Antier
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, 78350 Jouy-en-Josas, France
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; LE STUDIUM Research Consortium, Loire Valley Institute for Advanced Studies, Orléans-Tours, France
| | | |
Collapse
|
3
|
van den Brand H, Meijerhof R, Heetkamp MJW, van den Anker I, Ooms M, Kemp B, Molenaar R. Interaction between eggshell temperature and carbon dioxide concentration after day 8 of incubation on broiler chicken embryo development. Animal 2021; 15:100223. [PMID: 34030030 DOI: 10.1016/j.animal.2021.100223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022] Open
Abstract
Carbon dioxide (CO2) is considered to be an important factor during incubation of eggs. Effects attributed to higher CO2 concentrations during experiment might be due to confounding effects of other environmental conditions, such as incubation temperature. To disentangle effects of eggshell temperature (EST) and CO2 concentration, an experiment was conducted. A total of 630 Cobb 500 hatching eggs from 37 to 45 wk commercial breeder flocks were collected and incubated according to treatments. The experiment was setup as a complete randomized 2 × 3 factorial design, resulting in 6 treatments. From day 8 of incubation onward, broiler eggs were exposed to one of two EST (37.8 or 38.9 °C) and one of three CO2 concentrations (0.1, 0.4 or 0.8%). Eggs were incubated in climate-respiration chambers and metabolic heat production was determined continuously. At day 18 of incubation and at 6 h after hatching, embryo and chicken quality were determined by evaluation of organ weights, navel condition, blood metabolites and hepatic glycogen. Hatching time and chicken length at 6 h after hatching showed an interaction between EST and CO2 concentration (both P = 0.001). Furthermore, no effect of CO2 concentration was found on embryo development or chicken quality. Metabolic heat production between day 8 and 18 of incubation was not affected by either EST or CO2. At day 18 of incubation, an EST of 38.9 °C resulted in a higher egg weight loss, longer embryos, higher yolk free body mass (YFBM) and lower heart weight than an EST of 37.8 °C (all P < 0.008). At 6 h after hatching, an EST of 38.9 °C resulted in a higher residual yolk weight and lower YFBM, liver weight and heart weight than an EST of 37.8 °C (all P < 0.003). Lactate, uric acid and hepatic glycogen were not affected by EST at either day 18 of incubation or at hatch. Glucose was not affected by EST at day 18 of incubation, but at hatch, it was higher at an EST of 37.8 °C than at an EST of 38.9 °C (P = 0.02). It can be concluded that effects of CO2 concentration (at concentrations ≤0.8%) on embryonic development and chicken quality appear to be limited when EST is maintained at a constant level. Moreover, a higher EST from day 8 of incubation onward appears to negatively affect chicken quality at hatch.
Collapse
Affiliation(s)
- H van den Brand
- Adaptation Physiology Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - R Meijerhof
- Poultry Performance Plus, Kleine Enkweg 1, 7383 DB Voorst, the Netherlands
| | - M J W Heetkamp
- Adaptation Physiology Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - I van den Anker
- Adaptation Physiology Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - M Ooms
- Adaptation Physiology Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - B Kemp
- Adaptation Physiology Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - R Molenaar
- Adaptation Physiology Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
4
|
Vancamp P, Darras VM. Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol 2017; 459:71-78. [PMID: 28153797 DOI: 10.1016/j.mce.2017.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) are important mediators of vertebrate central nervous system (CNS) development, thereby regulating the expression of a wide variety of genes by binding to nuclear TH receptors. TH transporters and deiodinases are both needed to ensure appropriate intracellular TH availability, but the precise function of each of these regulators and their coaction during brain development is only partially understood. Rodent knockout models already provided some crucial insights, but their in utero development severely hampers research regarding the role of TH regulators during early embryonic stages. The establishment of novel gain- and loss-of-function techniques has boosted the position of externally developing non-mammalian vertebrates as research models in developmental endocrinology. Here, we elaborate on the chicken as a model organism to elucidate the function of TH regulators during embryonic CNS development. The fast-developing, relatively big and accessible embryo allows easy experimental manipulation, especially at early stages of brain development. Recent data on the characterisation and spatiotemporal expression pattern of different TH regulators in embryonic chicken CNS have provided the necessary background to dissect the function of each of them in more detail. We highlight some recent advances and important strategies to investigate the role of TH transporters and deiodinases in various CNS structures like the brain barriers, the cerebellum, the retina and the hypothalamus. Exploiting the advantages of this non-classical model can greatly contribute to complete our understanding of the regulation of TH bioavailability throughout embryonic CNS development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
5
|
Boleli IC, Morita VS, Matos Jr JB, Thimotheo M, Almeida VR. Poultry Egg Incubation: Integrating and Optimizing Production Efficiency. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0292] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014; 17:779-804. [PMID: 25138280 DOI: 10.1007/s10456-014-9440-7] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023]
Abstract
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.
Collapse
|
7
|
Verhoelst E, Bamelis F, De Ketelaere B, Trong NND, De Baerdemaeker J, Saeys W, Tsuta M, Decuypere E. The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane. Biotechnol Prog 2011; 27:1785-92. [PMID: 21936062 DOI: 10.1002/btpr.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/03/2011] [Indexed: 11/05/2022]
Abstract
Over the last decade, the poultry sector has sought to develop ways to monitor chicken embryonic development as to optimize the incubation conditions. One of the parameters of development which may change under different incubation conditions is the angiogenesis in the chorioallantoic membrane (CAM). To be able to quantify these changes in the angiogenesis and detect long-term effects on health, a non-destructive technique is necessary. In this article, the first steps toward such a non-destructive technique are successfully taken. A spatially resolved spectroscopy set-up is built and tested for its potential to measure changes in angiogenesis with incubation time, and differences between a normal and hypercapnic incubation. In this first study, reflectance measurements are performed directly on the CAM as the eggshell considerably complicates the analysis. This issue should be addressed in future research to come to a really non-destructive technique. An experiment was conducted in which one group was incubated under normal conditions, and another under early prenatal hypercapnic conditions (i.e., increased CO(2) concentrations). The angiogenesis in the CAM was measured at embryonic day (ED) 10, 13, and 16. The measurements showed a clear blood spectrum with an increasing amount of blood in time, and significant differences in the reflectance as function of the source-detector distances. However, no significant differences between the hypercapnia and the control group could be detected.
Collapse
Affiliation(s)
- Eva Verhoelst
- Faculty of Bioscience Engineering, Dept. of Biosystems, Division of MeBioS, K.U. Leuven, Kasteelpark Arenberg 30, Heverlee, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|