1
|
Svay K, Urrea C, Shamlou PA, Zhang H. Computational fluid dynamics analysis of mixing and gas-liquid mass transfer in wave bag bioreactor. Biotechnol Prog 2020; 36:e3049. [PMID: 32681589 DOI: 10.1002/btpr.3049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/25/2023]
Abstract
Single use bioreactors provide an attractive alternative to traditional deep-tank stainless steel bioreactors in process development and more recently manufacturing process. Wave bag bioreactors, in particular, have shown potential applications for cultivation of shear sensitive human and animal cells. However, the lack of knowledge about the complex fluid flow environment prevailing in wave bag bioreactors has so far hampered the development of a scientific rationale for their scale up. In this study, we use computational fluid dynamics (CFD) to investigate the details of the flow field in a 20-L wave bag bioreactor as a function of rocking angle and rocking speed. The results are presented in terms of local and mean velocities, mixing, and energy dissipation rates, which are used to create a process engineering framework for the scale-up of wave bag bioreactors. Proof-of-concept analysis of mixing and fluid flow in the 20-L wave bag bioreactor demonstrates the applicability of the CFD methodology and the temporal and spatial energy dissipation rates integrated and averaged over the liquid volume in the bag provide the means to correlate experimental volumetric oxygen transfer rates (kL a) data with power per unit volume. This correlation could be used as a rule of thumb for scaling up and down the wave bag bioreactors.
Collapse
Affiliation(s)
- Kirilynn Svay
- Amgen Bioprocessing Center, Keck Graduate Institute, Claremont, California, USA
| | - Christine Urrea
- Amgen Bioprocessing Center, Keck Graduate Institute, Claremont, California, USA
| | - Parviz Ayazi Shamlou
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Hu Zhang
- Amgen Bioprocessing Center, Keck Graduate Institute, Claremont, California, USA
| |
Collapse
|
2
|
Tang P, Xu J, Louey A, Tan Z, Yongky A, Liang S, Li ZJ, Weng Y, Liu S. Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Crit Rev Biotechnol 2020; 40:265-281. [DOI: 10.1080/07388551.2019.1711015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peifeng Tang
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Alastair Louey
- Elpiscience Biopharma, Cayman Islands George Town, Grand Cayman, UK
| | - Zhijun Tan
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Shaoyan Liang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Yongyan Weng
- Department of Civil Engineering, University of Nottingham, Nottingham, UK
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| |
Collapse
|
3
|
Arena TA, Chou B, Harms PD, Wong AW. An anti-apoptotic HEK293 cell line provides a robust and high titer platform for transient protein expression in bioreactors. MAbs 2019; 11:977-986. [PMID: 30907238 PMCID: PMC6601552 DOI: 10.1080/19420862.2019.1598230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023] Open
Abstract
HEK293 transient expression systems are used to quickly generate proteins for research and pre-clinical studies. With the aim of engineering a high-producing host that grows and transfects robustly in bioreactors, we deleted the pro-apoptotic genes Bax and Bak in an HEK293 cell line. The HEK293 Bax Bak double knock-out (HEK293 DKO) cell line exhibited resistance to apoptosis and shear stress. HEK293 DKO cells sourced from 2 L seed train bioreactors were most productive when a pH setpoint of 7.0, a narrow pH deadband of ±0.03, and a DO setpoint of 30% were used. HEK293 DKO seed train cells cultivated for up to 60 days in a 35 L bioreactor showed similar productivities to cells cultivated in shake flasks. To optimize HEK293 DKO transfection cultures, we first evaluated different pH and agitation parameters in ambr15 microbioreactors before scaling up to 10 L wavebag bioreactors. In ambr15 microbioreactors with a pH setpoint of 7.0, a wide pH deadband of ±0.3, and an agitation of 630 rpm, HEK293 DKO transient cultures yielded antibody titers up to 650 mg/L in 7 days. The optimal ambr15 conditions prompted us to operate the 10 L wavebag transfection without direct pH control to mimic the wide pH deadband ranges. The HEK293 DKO transfection process produces high titers at all scales tested. Combined, our optimized HEK293 DKO 35 L bioreactor seed train and 10 L high titer transient processes support efficient, large-scale recombinant protein production for research studies.
Collapse
Affiliation(s)
- Tia A Arena
- Department of Cell Culture, Genentech Inc., South San Francisco, CA, USA
| | - Bernice Chou
- Department of Cell Culture, Genentech Inc., South San Francisco, CA, USA
| | - Peter D. Harms
- Department of Cell Culture, Genentech Inc., South San Francisco, CA, USA
| | - Athena W. Wong
- Department of Cell Culture, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
4
|
Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 2018; 39:1-15. [PMID: 30431379 DOI: 10.1080/07388551.2018.1489778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
Collapse
Affiliation(s)
- Alireza Valdiani
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ole Kim Hansen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ulrik Braüner Nielsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Vivian Kvist Johannsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Maryam Shariat
- b Department of Food Science, Faculty of Food Science and Technology , Universiti Putra Malaysia , Serdang , Selangor 43400 UPM , Malaysia
| | - Milen I Georgiev
- c Institute of Microbiology , Bulgarian Academy of Sciences , Plovdiv 4000 , Bulgaria
| | - Vahid Omidvar
- d Department of Plant Pathology , University of Minnesota , St Paul , MN 55108 , USA
| | - Mortaza Ebrahimi
- e Department of Plant Tissue Culture , Agriculture Biotechnology Research Institute of Iran - Central Region Branch , Isfahan , Iran
| | | | - Rambod Abiri
- g Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor DE 43400 UPM , Malaysia
| |
Collapse
|
5
|
Nurhayati RW, Ojima Y, Dohda T, Kino-Oka M. Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system. Biotechnol Prog 2017; 34:362-369. [PMID: 29226613 DOI: 10.1002/btpr.2595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Indexed: 12/18/2022]
Abstract
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kL a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h-1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 109 cells L-1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018.
Collapse
Affiliation(s)
- Retno Wahyu Nurhayati
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Stem Cell and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Central Jakarta, 10430, Indonesia
| | - Yoshihiro Ojima
- Dept. of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Takeaki Dohda
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Forde GM, Rainey TJ, Speight R, Batchelor W, Pattenden LK. Matching the biomass to the bioproduct. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Xu S, Chen H. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol 2016; 231:149-159. [DOI: 10.1016/j.jbiotec.2016.06.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
8
|
Yuk IH, Russell S, Tang Y, Hsu WT, Mauger JB, Aulakh RPS, Luo J, Gawlitzek M, Joly JC. Effects of copper on CHO cells: Cellular requirements and product quality considerations. Biotechnol Prog 2014; 31:226-38. [DOI: 10.1002/btpr.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Inn H. Yuk
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Stephen Russell
- Analytical Operations; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Yun Tang
- Analytical Operations; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Wei-Ting Hsu
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Jacob B. Mauger
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Rigzen P. S. Aulakh
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Jun Luo
- Vacaville Manufacturing Sciences and Technology; Genentech, 1000 New Horizons Way Vacaville CA 95688
| | - Martin Gawlitzek
- Late Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - John C. Joly
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
9
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
10
|
Csaszar E, Cohen S, Zandstra PW. Blood stem cell products: Toward sustainable benchmarks for clinical translation. Bioessays 2013; 35:201-10. [DOI: 10.1002/bies.201200118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Abu-Absi S, Xu S, Graham H, Dalal N, Boyer M, Dave K. Cell Culture Process Operations for Recombinant Protein Production. MAMMALIAN CELL CULTURES FOR BIOLOGICS MANUFACTURING 2013; 139:35-68. [DOI: 10.1007/10_2013_252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Junne S, Solymosi T, Oosterhuis N, Neubauer P. Cultivation of Cells and Microorganisms in Wave-Mixed Disposable Bag Bioreactors at Different Scales. CHEM-ING-TECH 2012. [DOI: 10.1002/cite.201200149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Butler M, Meneses-Acosta A. Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 2012; 96:885-94. [PMID: 23053101 PMCID: PMC7080107 DOI: 10.1007/s00253-012-4451-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/28/2022]
Abstract
The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals.
Collapse
Affiliation(s)
- M Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | |
Collapse
|
14
|
Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 2012; 64:667-78. [PMID: 22451076 DOI: 10.1007/s10616-012-9446-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/27/2012] [Indexed: 10/28/2022] Open
Abstract
In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10-15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na(+), osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.
Collapse
|