1
|
Xu T, Tong L, Zhang Z, Zhou H, Zheng P. Glycosylation in Drosophila S2 cells. Biotechnol Bioeng 2024. [PMID: 39140464 DOI: 10.1002/bit.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a remarkable surge in the approval of therapeutic protein drugs, particularly recombinant glycoproteins. Drosophila melanogaster S2 cells have become an appealing platform for the production of recombinant proteins due to their simplicity and low cost in cell culture. However, a significant limitation associated with using the S2 cell expression system is its propensity to introduce simple paucimannosidic glycosylation structures, which differs from that in the mammalian expression system. It is well established that the glycosylation patterns of glycoproteins have a profound impact on the physicochemical properties, bioactivity, and immunogenicity. Therefore, understanding the mechanisms behind these glycosylation modifications and implementing measures to address it has become a subject of considerable interest. This review aims to comprehensively summarize recent advancements in glycosylation modification in S2 cells, with a particular focus on comparing the glycosylation patterns among S2, other insect cells, and mammalian cells, as well as developing strategies for altering the glycosylation patterns of recombinant glycoproteins.
Collapse
Affiliation(s)
- Tingting Xu
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Lixiang Tong
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Zhifu Zhang
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Peilin Zheng
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
2
|
Effect of prepropeptide replacement on γ-carboxylation and activity of recombinant coagulation factor IX. Biotechnol Lett 2022; 44:975-984. [PMID: 35731352 DOI: 10.1007/s10529-022-03269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
Based on observations indicating that the γ-carboxylase enzyme has a lower affinity for the protein C (PC) propeptide and that the γ-carboxylase region in the PC propeptide has a higher net charge, expression of recombinant chimeric factor IX (FIX) equipped with the PC propeptide was studied. The prepropeptide of FIX was replaced with that of PC by SOEing PCR and after cloning, recombinant pMT-prepro PC/FIX was transfected into insect Drosophila S2 cells. The expression and activity of expressed FIX were analyzed employing antigen and activity analyses 72 h of post-induction with copper. Higher secretion (1.2 fold) and activity (1.6 fold) levels were observed for chimeric prepro- PC/FIX in relation to wild-type FIX. Furthermore, after barium citrate precipitation, the evaluation of fully γ-carboxylated FIX indicated that more than 51% of the total FIX produced with the PC prepropeptide was fully γ-carboxylated, representing a substantial improvement (twofold) over a system employing the native FIX propeptide in which 25% of the protein is fully γ-carboxylated. The data illustrated that the expression of FIX using the PC propeptide led to much higher fully γ-carboxylated material, which is preferred to FIX constructs tolerating the sequence for the native FIX propeptide expressed in heterologous S2 systems.
Collapse
|
3
|
Beauglehole AC, Roche Recinos D, Pegg CL, Lee YY, Turnbull V, Herrmann S, Marcellin E, Howard CB, Schulz BL. Recent advances in the production of recombinant factor IX: bioprocessing and cell engineering. Crit Rev Biotechnol 2022; 43:484-502. [PMID: 35430942 DOI: 10.1080/07388551.2022.2036691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Aiden C. Beauglehole
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Cassandra L. Pegg
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Victor Turnbull
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Susann Herrmann
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Christopher B. Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L. Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Calumenin knockdown, by intronic artificial microRNA, to improve expression efficiency of the recombinant human coagulation factor IX. Biotechnol Lett 2022; 44:713-728. [PMID: 35412165 DOI: 10.1007/s10529-022-03249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES To improve the expression efficiency of recombinant hFIX, by enhancing its γ-carboxylation, which is inhibited by Calumenin (CALU), we used intronic artificial microRNAs (amiRNAs) for the CALU downregulation. METHODS Two human CALU (hCALU)-specific amiRNAs were designed, validated and inserted within a truncated form of the hFIX intron 1, in either 3'- or 5'-untranslated regions of the hFIX cDNA, in an expression vector. After transfections of a human cell line with the recombinant constructs, processing of the miRNAs confirmed by RT-PCR, using stem-loop primers. The hFIX and hCALU expression assessments were done based on RT-PCR results. The Gamma(γ)-carboxylation of the expressed hFIX was examined by a barium citrate precipitation method, followed by Enzyme-Linked Immunosorbent Assay. RESULTS Efficient CALU down regulations, with more than 30-fold decrease, occurred in the cells carrying either of the two examined the 3'-located amiRNAs. The CALU downregulation in the same cells doubled the FIX γ-carboxylation, although the transcription of the FIX decreased significantly. On the other hand, while the expression of the amiRNAs from the 5'-located intron had no decreasing effect on the expression level of CALU, the level of hFIX transcription in these cells increased almost twofold compared to the construct without amiRNA. CONCLUSION The CALU downregulation, consistent with efficient hFIX γ-carboxylation, occurred in the cells carrying either of the two amiRNAs containing constructs, although it was affected by the locations of the amiRNA carrying introns, suggesting a possible need to optimize the conditions for the amiRNAs expression.
Collapse
|
5
|
Improvement of the recombinant human coagulation factor IX expression by co-expression of a novel transcript of Drosophila γ carboxylase in a human cell line. Biotechnol Lett 2020; 42:2147-2156. [PMID: 32514789 DOI: 10.1007/s10529-020-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Mammalian cells as the main host for production of human proteins are incapable of complete γ-carboxylation of over-expressed Vitamin K Dependent (VKD) proteins. The Drosophila γ-glutamyl carboxylase (DγC) has been shown to be more efficient than its human counterpart in γ-carboxylation of human substrates, in vitro. Considering the Drosophila γ-carboxylase (DγC) efficiency, in comparison with its human counterpart, for recognition and γ-carboxylation of a human substrate in vitro, we were determined to study the effect of the DγC on the hFIX expression in a mammalian cell line. With this aim, we examined co-expression of the DγC with the hFIX, in a human cell line. RESULTS While the co-expression of a complete DγC cDNA reduced the hFIX expression, a truncated form of DγC could improve both the expression level (up to 1211 ng/106 cells/ml on the 4th day of post-transfection) and carboxylation of the expressed hFIX, significantly (p < 0.009). CONCLUSIONS Our findings provided evidences for potential of a partial fragment of the DγC for improvement of the γ-carboxylation of a human substrate in a mammalian cell. Our experimental data, in accordance with in silico analysis suggested that the DγC C-terminal fragment, with the advantage of a Kozak-like element has the potential of being expressed as a separate internal translation unit, to generate a peptide with appropriate γ-carboxylase activity.
Collapse
|
6
|
Pakdaman SF, Vatandoost J, Bos MHA. Enhanced functional recombinant factor IX production by human embryonic kidney cells engineered to overexpress VKORC1. Biotechnol Prog 2019; 36:e2938. [PMID: 31677255 DOI: 10.1002/btpr.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 11/08/2022]
Abstract
Replacement therapy with recombinant drugs is the main therapeutic strategy for hemophilia B patients. To reduce the production costs of recombinant coagulation factors, improvement of their expression and activity by enhancement of γ-carboxylation might be of interest. The expression and functional activity of vitamin K-dependent (VKD) coagulation proteins rely, in part, on the VKD process of γ-carboxylation that is mediated by the enzymes γ-carboxylase and vitamin K epoxide reductase (VKOR). Since the recombinant production of VKD proteins is hampered by the inefficiency of this enzymatic process, we specifically have examined the stable expression of functional blood coagulation factor IX (FIX) in HEK293 cells following transient overexpression of VKORC1 as an important part of VKOR component. Recombinant hFIX-producing human embryonic kidney (HEK) cells were transfected to overexpress VKORC1. Following reverse transcription polymerase chain reaction (RT-PCR) analysis, expression efficiency of the active hFIX was analyzed by performing enzyme-linked immunosorbent assay and coagulation test. In addition, to quantify γ-carboxylated recombinant FIX, the barium citrate method was used. Overexpression of VKORC1 in FIX-producing HEK cells, resulting in a 3.2-fold higher expression of functional FIX, which displayed a 1.4-fold enhanced specific activity. Moreover, a 3.9-fold enhanced recovery of fully γ-carboxylated FIX following barium citrate adsorption was achieved. Collectively, these findings indicate that the overexpression of VKORC1 results in the production of higher levels of functional hFIX in HEK293 cells. The increase of the VKORC1 as a supplier of γ-carboxylase seems to play a significant role in increasing the amount and efficiency of recombinant FIX production, thereby reducing the production costs.
Collapse
Affiliation(s)
| | - Jafar Vatandoost
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Vatandoost J, Bos MHA. Improved activity and expression of recombinant human factor IX by propeptide engineering. ACTA ACUST UNITED AC 2019; 27:653-660. [PMID: 31637661 DOI: 10.1007/s40199-019-00299-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The main therapeutic strategy for Hemophilia B patients involves the administration of recombinant coagulation factors IX (rFIX). Although there are various approaches to increasing the activity of rFIX, targeted protein engineering of specific residues could result in increased rFIX activity through enhanced γ-carboxylation. Specific amino acids in the propeptide sequence of vitamin K-dependent proteins are known to play a role in the interaction with the enzyme γ-carboxylase. The net hydrophobicity and charge of the γ-carboxylic recognition site (γ-CRS) region in the propeptide are important determinants of γ-carboxylase binding. So the contribution of individual γ-CRS residues to the expression of fully γ-carboxylated and active FIX was studied. METHODS Propeptide residues at positions -14, -13, or - 12 were substituted for equivalent prothrombin amino acids by SEOing PCR. The recombinant FIX variants were transfected and stably expressed in Drosophila S2 cells, and the expression of both total FIX protein and active FIX was assessed. RESULTS While overall the substitutions resulted in an increase of both total FIX protein expression as well as an increase in the portion of active FIX, the highest increase in FIX protein expression, FIX activity, and specific FIX activity was observed following the simultaneous substitution of residues at positions -12, -13, and - 14. The enhanced rFIX activity was further confirmed by enrichment for functional, fully γ-carboxylated rFIX species via barium citrate adsorption. CONCLUSION Our findings indicate that by increasing both the net charge and the net hydrophobicity of the FIX γ-CRS region, the expression of fully γ-carboxylated and as such active FIX is enhanced. Graphical abstract .
Collapse
Affiliation(s)
- Jafar Vatandoost
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Bahrami S, Ghaffari M, Zomorodipour A. Production of recombinant human factor IX by propeptide modification in Drosophila S2 cell line. Biotechnol Lett 2019; 41:347-355. [PMID: 30673933 DOI: 10.1007/s10529-019-02643-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/01/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare the effect of pre-propeptide (pre-pro) of the human prothrombin (hPT), with both the native and an R-9N mutant forms of the human factor IX (hFIX) pre-pro on the hFIX carboxylation, in Drosophila cell. RESULTS The three different pre-pro sequences, equipped with Drosophila Kozak, were joined to the mature hFIX cDNA and were subjected to transient expression analysis of hFIX in the S2 Drosophila cells, compared to that of a native hFIX cDNA, with its native Kozak. Replacement of the hFIX pre-pro sequence with that of hPT increased the biological activity of hFIX, significantly. The highest total level of hFIX expression occurred for the native hFIX with the Drosophila Kozak. However, the hFIX secretion efficiency with this construct was less than that of the native hFIX with its native Kozak. The R-9N substitution, in the hFIX propeptide, with no apparent effect on the FIX γ-carboxylation, reduced the FIX expression efficiency. CONCLUSION Potential of the hPT pre-pro sequence for FIX expression in Drosophila cells, was confronted by γ-glutamyl carboxylase (GGCX) saturation in ER, besides the functional importance of -9 amino acid in propeptide is described; these are noteworthy for production of γ-carboxylated proteins.
Collapse
Affiliation(s)
- Samira Bahrami
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965/161, Tehran, Iran
- Department of Biochemistry, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghaffari
- Department of Biochemistry, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965/161, Tehran, Iran.
| |
Collapse
|
9
|
Bushehri A, Zare-Abdollahi D, Alavi A, Dehghani A, Mousavimikala M, Khorram Khorshid HR. Identification of PROS1 as a Novel Candidate Gene for Juvenile Retinitis Pigmentosa. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:179-190. [PMID: 32489947 PMCID: PMC7241841 DOI: 10.22088/ijmcm.bums.8.3.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Homozygous mutations of PROS1, encoding vitamin K-dependent protein S (PS), have been reported so far to be associated with purpura fulminans, a characteristic fatal venous thromboembolic disorder. The current work for the first time reports the clinical phenotype in patients with juvenile retinitis pigmentosa harboring a novel likely pathogenic variant in thePROS1 gene. Whole-exome sequencing was performed on probands of a cohort with inherited retinal disease. Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography and spectral-domain optical coherence tomography. Analysis of whole-exome and Sanger sequencing led to the identification of a homozygous missense substitution (c.G122C:p.R41P) in PROS1 in affected individuals from two unrelated consanguineous families of Persian origin which had classic retinitis pigmentosa with no history of venous thromboembolic disorder. This variant was segregated, fully congruous with the phenotype in all family members. Consistently, none of 1000 unrelated healthy individuals from the same population carried the mentioned variant, according to Iranian national genome database (Iranome) and additional in-house exome control data. This study provides inaugural clinical traces for different role of PS as a ligand for TAM receptor-mediated efferocytosis at the retinal pigmented epithelium; the R41P variant may affect proper folding of PS needed for γ-carboxylation and extra-cellular secretion. That conformational change may also lead to defective apoptotic cell phagocytosis resulting in postnatal degeneration of photoreceptors.
Collapse
Affiliation(s)
- Ata Bushehri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Alireza Dehghani
- Department of Ophthalmology, Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | |
Collapse
|
10
|
Vatandoost J, Zarei Sani O. Effect of propeptide amino acid substitution in γ-carboxylation, activity and expression of recombinant human coagulation factor IX. Biotechnol Prog 2017; 34:515-520. [PMID: 29086495 DOI: 10.1002/btpr.2582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/18/2017] [Indexed: 11/07/2022]
Abstract
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre-propeptide sequences. The propeptide is connected to γ-carboxylase enzyme through the γ-carboxylase recognition site for the direct γ-carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ-carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ-carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT-hFIX-M14 expression cassette, containing cDNA of hFIX with substituted -14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4-fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD-14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ-carboxylated hFIX species via barium citrate adsorption demonstrated 2-fold enhanced recovery in the S2-expressing hFIXD-14A relative to that expressed native hFIX. These results show that changing -14 residues leads to a decrease in the binding affinity to substrate, increase in γ-carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515-520, 2018.
Collapse
Affiliation(s)
| | - Omid Zarei Sani
- Dept. of Biology, Islamic Azad University, Damghan Branch, Damghan, Iran
| |
Collapse
|
11
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
12
|
Successful synthesis of active human coagulation factor VII by co-expression of mammalian gamma-glutamyl carboxylase and modification of vit.K cycle in Drosophila Schneider S2 cells. Cytotechnology 2017; 69:317-327. [PMID: 28070807 DOI: 10.1007/s10616-016-0059-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022] Open
Abstract
Mammalian gamma-glutamyl carboxylase and reduced vitamin K are indispensable for synthesis of mature mammalian vitamin K dependent proteins including some of blood coagulation factors (factors II, VII, IX, and X). It was well known that Drosophila melanogaster expressed gamma-glutamyl carboxylase and possessed a vit.K cycle although native substrates for them have not been identified yet. Despite the potential capability of gamma carboxylation in D. melanogaster derived cells such as S2 cells, Drosophila gamma-glutamyl carboxylase failed to gamma carboxylate a peptide fused to the human coagulation factor IX propeptide. Thus, it had been believed that the Drosophila system was not adequate to synthesize mammalian vit.K dependent proteins. Indeed, we previously attempted to synthesize biologically active factor VII in S2 cells although we were not able to obtain it. However, recently, a successful transient expression of biologically active human factor IX from S2 cells was reported. In the present study, several expression vectors which enable expressing mammalian GGCX, VKORC1, and/or PDIA2 along with F7 were developed. S2 cells transfected with pMKA85, pMAK86, and pMAK219 successfully synthesized active FVII. Thus, mammalian GGCX was indispensable to synthesize active FVII while mammalian VKORC1 and PDIA2 were not critical but supportive factors for S2 cells.
Collapse
|
13
|
Levy C, Fusil F, Amirache F, Costa C, Girard-Gagnepain A, Negre D, Bernadin O, Garaulet G, Rodriguez A, Nair N, Vandendriessche T, Chuah M, Cosset FL, Verhoeyen E. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc -/- mice. J Thromb Haemost 2016; 14:2478-2492. [PMID: 27685947 DOI: 10.1111/jth.13520] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/25/2016] [Indexed: 12/30/2022]
Abstract
Essentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy. BaEV-LVs allowed secretion of functional factor IX from B cells at therapeutic levels in vivo. SUMMARY Background B cells are attractive targets for gene therapy for diseases associated with B-cell dysfunction and particularly interesting for immunotherapy. Moreover, B cells are potent protein-secreting cells and can be tolerogenic antigen-presenting cells. Objective Evaluation of human B cells for secretion of clotting factors such as factor IX (FIX) as a possible treatment for hemophilia. Methods We tested here for the first time our newly developed baboon envelope (BaEV) pseudotyped lentiviral vectors (LVs) for human (h) B-cell transduction following their adaptive transfer into an NOD/SCIDγc-/- (NSG) mouse. Results Upon B-cell receptor stimulation, BaEV-LVs transduced up to 80% of hB cells, whereas vesicular stomatitis virus G protein VSV-G-LV only reached 5%. Remarkably, BaEVTR-LVs permitted efficient transduction of 20% of resting naive and 40% of resting memory B cells. Importantly, BaEV-LVs reached up to 100% transduction of human plasmocytes ex vivo. Adoptive transfer of BaEV-LV-transduced mature B cells into NOD/SCID/γc-/- (NSG) [non-obese diabetic (NOD), severe combined immuno-deficiency (SCID)] mice allowed differentiation into plasmablasts and plasma B cells, confirming a sustained high-level gene marking in vivo. As proof of principle, we assessed BaEV-LV for transfer of human factor IX (hFIX) into B cells. BaEV-LVs encoding FIX efficiently transduced hB cells and their transfer into NSG mice demonstrated for the first time secretion of functional hFIX from hB cells at therapeutic levels in vivo. Conclusions The BaEV-LVs might represent a valuable tool for therapeutic protein secretion from autologous B cells in vivo in the treatment of hemophilia and other acquired or inherited diseases.
Collapse
Affiliation(s)
- C Levy
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Fusil
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Amirache
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - C Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - A Girard-Gagnepain
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - D Negre
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - O Bernadin
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - G Garaulet
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - A Rodriguez
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Nair
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - T Vandendriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - M Chuah
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - F-L Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - E Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm, U1065, Équipe 'contrôle métabolique des morts cellulaires', Nice, France
| |
Collapse
|
14
|
Vatandoost J, Bos MHA. Efficient expression of functional human coagulation factor IX in stably-transfected Drosophila melanogaster S2 cells; comparison with the mammalian CHO system. Biotechnol Lett 2016; 38:1691-8. [DOI: 10.1007/s10529-016-2156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023]
|
15
|
Azadbakhsh AS, Sam MR, Farokhi F. Bioengineering of differentiated hepatocytes with human factor IX-expressing plasmids in vitro. Bioengineered 2016; 7:497-503. [PMID: 27458870 DOI: 10.1080/21655979.2016.1207018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
For somatic gene therapy of hemophilia B, hepatocytes as the main cellular host for expression of hFIX are attractive targets. In gene therapy protocols, an efficient expression vector equipped with cis-regulatory elements such as introns is required. With this in mind, hFIX-expressing plasmids equipped with different combinations of 2 human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element were used for bioengineering of HepG2 cells as a model for differentiated hepatocytes and CHO cells a cell line generally used to produce recombinant hFIX (rhFIX). In HepG2 cells, the highest hFIX secretion level occurred for the intron-less plasmid with 8.5 to 53.8- fold increases, while in CHO cells, the hBG intron-I containing plasmid induced highest hFIX secretion level with 2.3 to 14.3-fold increases as compared to other plasmids. The first hBG intron appears to be more effective than the second one in both cell lines. The expression level was further increased upon the inclusion of the Kozak element. The highest hFIX activity was obtained from the cells that carrying the intron-less plasmids with 470 mU/ml and 25 mU/ml for HepG2 and CHO cells respectively. Secretion of active hFIX by all constructs was documented except for hBG intron-II containing construct in both cell lines. HepG2 cells were able to secret higher hFIX levels by 0.6 to 112.2-fold increases with activity by 5.3 to 16.4-fold increases compared to CHO cells transfected with the same constructs. Presence of both hBG intron-I and II inside the hFIX-cDNA provides properly spliced hFIX transcripts in both cell lines. In conclusion, the advantages of hBG introns as attractive cis-regulatory elements to obtain higher expression level of hFIX particularly in CHO cells were demonstrated. Hepatocytes could be effectively bioengineered with the use of plasmid vectors and this strategy may provide a potential in-vitro source of functional hepatocytes for ex-vivo gene therapy of hemophilias and production of rhFIX in vitro.
Collapse
Affiliation(s)
- Azadeh Sadat Azadbakhsh
- a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran
| | - Mohammad Reza Sam
- a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran
| | - Farrah Farokhi
- b Department of Histology and Embryology , Faculty of Science, Urmia University , Urmia , Iran
| |
Collapse
|
16
|
Sam MR, Azadbakhsh AS, Farokhi F, Rezazadeh K, Sam S, Zomorodipour A, Haddad-Mashadrizeh A, Delirezh N, Mokarizadeh A. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids. Biologicals 2016; 44:170-7. [PMID: 26928674 DOI: 10.1016/j.biologicals.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Azadeh Sadat Azadbakhsh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Farrah Farokhi
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Kobra Rezazadeh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Sohrab Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Alireza Zomorodipour
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Aram Mokarizadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
17
|
Human cell lines: A promising alternative for recombinant FIX production. Protein Expr Purif 2016; 121:149-56. [PMID: 26802680 DOI: 10.1016/j.pep.2015.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/11/2015] [Accepted: 11/27/2015] [Indexed: 01/17/2023]
Abstract
Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins.
Collapse
|
18
|
Approaches for recombinant human factor IX production in serum-free suspension cultures. Biotechnol Lett 2015; 38:385-94. [DOI: 10.1007/s10529-015-1991-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
|
19
|
Khorshidi S, Zomorodipour A, Behmanesh M, Vatandoost J, Bos MHA. Functional expression of the human coagulation factor IX using heterologous signal peptide and propeptide sequences in mammalian cell line. Biotechnol Lett 2015; 37:1773-81. [PMID: 26105559 DOI: 10.1007/s10529-015-1868-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To study the functions of pre-pro leader peptides of the human and porcine prothrombins on the human FIX (hFIX) expression. RESULTS In silico analysis predicted higher secretion efficiencies for the prothrombins-derived signal peptides, in comparison with the native hFIX signal peptide. Replacements of the hFIX pre-pro sequence with those of the two prothrombins, led to increased levels of transcription of the chimeric transgenes, as compared to the native clone. This was in consistent with the lower minimum free energies, calculated for the recombinant transcripts, based on their secondary structures. Evaluation of secretion efficiency revealed that the highest and lowest FIX secretions belong to signal peptides derived from porcine' prothrombin and hFIX, respectively. Coagulation activities of the FIX expressed from chimeric variants could be increased up to tenfold, relative to the native clone. CONCLUSION The feasibility of a leader-peptide replacement for the improvement of both transcription and post-transcriptional processes is described that can be relevant for production the vitamin-K dependent proteins.
Collapse
Affiliation(s)
- Shohreh Khorshidi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
20
|
Kumar SR. Industrial production of clotting factors: Challenges of expression, and choice of host cells. Biotechnol J 2015; 10:995-1004. [PMID: 26099845 DOI: 10.1002/biot.201400666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored.
Collapse
|
21
|
Abstract
We review the properties and uses of cell lines in Drosophila research, emphasizing the variety of lines, the large body of genomic and transcriptional data available for many of the lines, and the variety of ways the lines have been used to provide tools for and insights into the developmental, molecular, and cell biology of Drosophila and mammals.
Collapse
Affiliation(s)
- Lucy Cherbas
- Drosophila Genomics Resource Center, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA; Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Lei Gong
- Drosophila Genomics Resource Center, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
22
|
Rishavy MA, Berkner KL. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 2012; 3:135-48. [PMID: 22516721 PMCID: PMC3648714 DOI: 10.3945/an.111.001719] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vitamin K-dependent carboxylase uses vitamin K oxygenation to drive carboxylation of multiple glutamates in vitamin K-dependent proteins, rendering them active in a variety of physiologies. Multiple carboxylations of proteins are required for their activity, and the carboxylase is processive, so that premature dissociation of proteins from the carboxylase does not occur. The carboxylase is unique, with no known homology to other enzyme families, and structural determinations have not been made, rendering an understanding of catalysis elusive. Although a model explaining the relationship of oxygenation to carboxylation had been developed, until recently almost nothing was known of the function of the carboxylase itself in catalysis. In the past decade, discovery and analysis of naturally occurring carboxylase mutants has led to identification of functionally relevant residues and domains. Further, identification of nonmammalian carboxylase orthologs has provided a basis for bioinformatic analysis to identify candidates for critical functional residues. Biochemical analysis of rationally chosen carboxylase mutants has led to breakthroughs in understanding vitamin K oxygenation, glutamate carboxylation, and maintenance of processivity by the carboxylase. Protein carboxylation has also been assessed in vivo, and the intracellular environment strongly affects carboxylase function. The carboxylase is an integral membrane protein, and topological analysis, coupled with biochemical determinations, suggests that interaction of the carboxylase with the membrane is an important facet of function. Carboxylase homologs, likely acquired by horizontal transfer, have been discovered in some bacteria, and functional analysis of these homologs has the potential to lead to the discovery of new roles of vitamin K in biology.
Collapse
|