1
|
León M, Prieto J, Molina-Navarro MM, García-García F, Barneo-Muñoz M, Ponsoda X, Sáez R, Palau F, Dopazo J, Izpisua Belmonte JC, Torres J. Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response. Cell Death Discov 2023; 9:217. [PMID: 37393339 DOI: 10.1038/s41420-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. A Redox-immune axis underlying motor neuron degeneration caused by the absence of Gdap1. Our results show that Gdap1-/- motor neurons have a fragile cellular phenotype that is prone to degeneration. Gdap1-/- iPSCs differentiated into motor neurons showed an altered metabolic state: decreased glycolysis and increased OXPHOS. These alterations may lead to hyperpolarization of mitochondria and increased ROS levels. Excessive amounts of ROS might be the cause of increased mitophagy, p38 activation and inflammation as a cellular response to oxidative stress. The p38 MAPK pathway and the immune response may, in turn, have feedback mechanisms, leading to the induction of apoptosis and senescence, respectively. CAC, citric acid cycle; ETC, electronic transport chain; Glc, glucose; Lac, lactate; Pyr, pyruvate.
Collapse
Affiliation(s)
- Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - María Micaela Molina-Navarro
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francisco García-García
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat Predepartamental de Medicina, Universidad Jaume I, Castellón de la Plana, Castellón, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Rosana Sáez
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francesc Palau
- Institut de Recerca and Hospital San Joan de Déu, 08950, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Joaquín Dopazo
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, 5510 Morehouse Drive, San Diego, CA, 92121, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain.
- Instituto de Investigación Sanitaria (INCLIVA), 46010, València, Spain.
| |
Collapse
|
2
|
Damián JP, Vázquez Alberdi L, Canclini L, Rosso G, Bravo SO, Martínez M, Uriarte N, Ruiz P, Calero M, Di Tomaso MV, Kun A. Central Alteration in Peripheral Neuropathy of Trembler-J Mice: Hippocampal pmp22 Expression and Behavioral Profile in Anxiety Tests. Biomolecules 2021; 11:biom11040601. [PMID: 33921657 PMCID: PMC8074002 DOI: 10.3390/biom11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) type 1 disease is the most common human hereditary demyelinating neuropathy. Mutations in pmp22 cause about 70% of all CMT1. Trembler-J (TrJ/+) mice are an animal model of CMT1E, having the same spontaneous pmp22 mutation that is found in humans. We compared the behavior profile of TrJ/+ and +/+ (wild-type) in open-field and elevated-plus-maze anxiety tests. In these tests, TrJ/+ showed an exclusive head shake movement, a lower frequency of rearing, but a greater frequency of grooming. In elevated-plus-maze, TrJ/+ defecate more frequently, performed fewer total entries, and have fewer entries to closed arms. These hippocampus-associated behaviors in TrJ/+ are consistent with increased anxiety levels. The expression of pmp22 and soluble PMP22 were evaluated in E17-hippocampal neurons and adult hippocampus by in situ hybridization and successive immunohistochemistry. Likewise, the expression of pmp22 was confirmed by RT-qPCR in the entire isolated hippocampi of both genotypes. Moreover, the presence of aggregated PMP22 was evidenced in unmasked granular hippocampal adult neurons and shows genotypic differences. We showed for the first time a behavior profile trait associated with anxiety and a differential expression of pmp22/PMP22 in hippocampal neurons of TrJ/+ and +/+ mice, demonstrating the involvement at the central level in an animal model of peripheral neuropathy (CMT1E).
Collapse
Affiliation(s)
- Juan Pablo Damián
- Unidad de Bioquímica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Lucia Vázquez Alberdi
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany;
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Silvia Olivera Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay;
| | - Mariana Martínez
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay;
| | - Paul Ruiz
- Unidad de Biofísica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Miguel Calero
- Unidad de Encefalopatías Espongiformes, UFIEC, CIBERNED, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Instituto de Salud Carlos III, 28031 Madrid, Spain;
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-2487-1616; Fax: +598-2487-5461
| |
Collapse
|
3
|
Zhou X, Zhang B, Qiao K, Lu J, Chen X, Wang Y, Zhu D, Wang Y. Central nervous system impairment detected by somatosensory evoked potentials in patients with Charcot-Marie-Tooth disease type 1A. J Clin Neurosci 2020; 79:191-196. [PMID: 33070894 DOI: 10.1016/j.jocn.2020.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Diseases related to peripheral myelin protein 22 (PMP22) have been implicated to involve the central nervous system (CNS). This study aimed to detect central nerve impairment using somatosensory evoked potentials (SSEPs) in patients with Charcot-Marie-Tooth disease (CMT) 1A. A total of 30 CMT1A patients and 26 healthy volunteers were included. Baseline characteristics, brain MRI and segmental SSEPs were collected from the participants. The peak latencies of N9, N13 and N20 were recorded, and central conduction velocity (CCT) was calculated and compared between groups. Significant differences were found in the peak latencies and amplitudes of N9, N13 and N20 between the two groups. CCT was significantly prolonged in the CMT group (7.05 ± 2.09 ms) compared to the control group (5.40 ± 1.79 ms) (p = 0.003). Six of 30 CMT patients had abnormal MRI signals, but no correlation with CCT was found. The central somatosensory pathway that carries SSEPs was impaired in CMT1A patients, which implies an important underlying role of PMP22 in the CNS.
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Beidi Zhang
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Kai Qiao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Yin Wang
- Department of Pathology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Griso O, Puccio H. Primary Cultures of Pure Embryonic Dorsal Root Ganglia Sensory Neurons as a New Cellular Model for Friedreich's Ataxia. Methods Mol Biol 2020; 2056:241-253. [PMID: 31586352 DOI: 10.1007/978-1-4939-9784-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral neuropathies can have various origins, from genetic to acquired causes, and affect altogether a large group of people in the world. Current available therapies aim at helping the disease symptoms but not to correct or stop the development of the disease. Primary neuronal cultures represent an essential tool in the study of events related to peripheral neuropathies as they allow to isolate the affected cell types, often originating in complex tissues in which they account for only a few percentage of cells. They provide a powerful system to identifying or testing compounds with potential therapeutic effect in the treatment of those diseases. Friedreich's ataxia is an autosomal recessive neurodegenerative disorder, which is characterized by a progressive spinocerebellar and sensory ataxia. Proprioceptive neurons of the dorsal root ganglia (DRG) are the primary affected cells. The disease is triggered by a mutation in the gene FXN which leads to a reduction of the frataxin protein. In order to study the neurophysiopathology of the disease at the cellular and molecular levels, we have established a model of primary cultures of DRG sensory neurons in which we induce the loss of the frataxin protein. With such a model we can alleviate the issues related to the complexity of DRG tissues and low amount of sensory neuron material in adult mouse. Hereby, we provide a protocol of detailed and optimized methods to obtain high yield of healthy mouse DRG sensory neuron in culture.
Collapse
Affiliation(s)
- Olivier Griso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- INSERM, U1258, Illkirch, France
- CNRS, UMR7104, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
- INSERM, U1258, Illkirch, France.
- CNRS, UMR7104, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Wu R, Lv H, Zhang W, Wang Z, Zuo Y, Liu J, Yuan Y. Clinical and Pathological Variation of Charcot-Marie-Tooth 1A in a Large Chinese Cohort. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6481367. [PMID: 28835897 PMCID: PMC5556987 DOI: 10.1155/2017/6481367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) caused by peripheral myelin protein 22 (PMP22) gene duplication is the most common form of hereditary polyneuropathy. Twenty-four genetically confirmed CMT1A patients with sural nerve biopsies were enrolled in this study. The clinical picture included a great variability of phenotype with mean onset age of 22.2 ± 14.5 years (1-55 years). Pathologically, we observed a severe reduction in myelinated fiber density showing three types of changes: pure onion bulb formation in 3 cases (12.5%), onion bulb formation with axonal sprouts in 10 cases (41.7%), and focally thickened myelin with onion bulb formation or/and axonal sprouts in 11 cases (45.8%). We observed no significant correlation between nerve fiber density and disease duration. There was no significant difference between the 3 pathological types in terms of clinical manifestations, nerve fiber density, and g-ratio. Our study indicates that there is marked variability in the age of onset of CMT1A, as well as significant pathological changes without deterioration with the development of the disease. Focally thickened myelin is another common morphological feature of demyelination.
Collapse
Affiliation(s)
- Rui Wu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yuehuan Zuo
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
6
|
Das N, Kandalaft S, Wu X, Malhotra A. Cranial nerve involvement in Charcot–Marie–Tooth Disease. J Clin Neurosci 2017; 37:59-62. [DOI: 10.1016/j.jocn.2016.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022]
|
7
|
Heffernan C, Jain MR, Liu T, Kim H, Barretto K, Li H, Maurel P. Nectin-like 4 Complexes with Choline Transporter-like Protein-1 and Regulates Schwann Cell Choline Homeostasis and Lipid Biogenesis in Vitro. J Biol Chem 2017; 292:4484-4498. [PMID: 28119456 DOI: 10.1074/jbc.m116.747816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice.
Collapse
Affiliation(s)
- Corey Heffernan
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Mohit R Jain
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Tong Liu
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Hyosung Kim
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Kevin Barretto
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Hong Li
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Patrice Maurel
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| |
Collapse
|