Danescu A, Rens EG, Rehki J, Woo J, Akazawa T, Fu K, Edelstein-Keshet L, Richman JM. Symmetry and fluctuation of cell movements in neural crest-derived facial mesenchyme.
Development 2021;
148:dev.193755. [PMID:
33757991 PMCID:
PMC8126411 DOI:
10.1242/dev.193755]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
In the face, symmetry is established when bilateral streams of neural crest cells leave the neural tube at the same time, follow identical migration routes and then give rise to the facial prominences. However, developmental instability exists, particularly surrounding the steps of lip fusion. The causes of instability are unknown but inability to cope with developmental fluctuations are a likely cause of congenital malformations, such as non-syndromic orofacial clefts. Here, we tracked cell movements over time in the frontonasal mass, which forms the facial midline and participates in lip fusion, using live-cell imaging of chick embryos. Our mathematical examination of cell velocity vectors uncovered temporal fluctuations in several parameters, including order/disorder, symmetry/asymmetry and divergence/convergence. We found that treatment with a Rho GTPase inhibitor completely disrupted the temporal fluctuations in all measures and blocked morphogenesis. Thus, we discovered that genetic control of symmetry extends to mesenchymal cell movements and that these movements are of the type that could be perturbed in asymmetrical malformations, such as non-syndromic cleft lip.
This article has an associated ‘The people behind the papers’ interview.
Highlighted Article: Live imaging of the chick embryo face followed by mathematical analysis of mesenchymal cell tracks captures novel fluctuations between states of order/disorder as well as symmetry/asymmetry, revealing developmental instabilities that are part of normal morphogenesis.
Collapse