1
|
Becker von Rose A, Kobus K, Bohmann B, Lindquist-Lilljequist M, Eilenberg W, Bassermann F, Reeps C, Eckstein HH, Trenner M, Maegdefessel L, Neumayer C, Brostjan C, Roy J, Hultgren R, Schwaiger BJ, Busch A. Radiation and chemotherapeutics are associated with altered aortic aneurysm growth in cancer patients. Eur J Vasc Endovasc Surg 2022; 64:255-264. [PMID: 35853577 DOI: 10.1016/j.ejvs.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Co-prevalence of aorto-iliac aneurysm (i.e. AAA) and cancer confronts patients and physicians with two life-threatening diseases. Modern chemotherapeutics and target therapies might impact the aneurysm wall integrity and subsequently affect growth. The purpose of this study was to assess associations between malignancy, therapeutic regimens and the growth rates of aorto-iliac aneurysms. PATIENTS AND METHODS A retrospective single-center analysis identified patients with aneurysm + cancer. Patients with ≥2 CT angiograms over ≥6 months and additional malignancy were included. Clinical data and aneurysm diameters were analyzed. AAA growth under cancer therapy (chemotherapy/radiation) was compared to a non-cancer AAA control cohort and to meta-analysis data. Statistics included t-tests and a linear regression model with correction for initial aortic diameter and type of treatment. RESULTS From 2003 - 2020, 217 patients (median age 70 years; 92% male) with 246 aneurysms (58.8% AAA) and 238 malignancies were identified. Prostate (27%) and lung (16%) cancer were most frequently seen, 157 patients (72%) received chemotherapy and 105 patients (48%) radiation, thereof 79 (36.4%) both. Annual AAA growth was not significantly different for cancer and non-cancer patients (2.0±2.3 vs. 2.8±2.1mm/y, p=0.20). However, subgroup analyses revealed that radiation was associated with a significantly reduced aneurysm growth rate compared to cancer patients without radiation (1.1±1.3 vs. 1.6±2.1 mm/y, p=0.046) and to the non-cancer control cohort (1.7±1.9 vs. 2.8±2.1 mm/y, p=0.007). Administration of antimetabolites showed significantly increased AAA growth (+0.9mm/year, p=0.011), while e.g. topoisomerase inhibitors (-0.8mm/year, p=0.17) and anti-androgens (-0.5mm/year, p=0.27) showed a possible trend for reduced growth. Similar was observed for iliac aneurysms (n=85). Additionally, effects were persistent in combinations of chemotherapies (2.6±1.4 substances/patient). CONCLUSION Cancer patients with concomitant aortic aneurysms may require intensified monitoring when undergoing specific therapies, such as antimetabolites, since they may experience an increased aneurysm growth rate. Radiation may be associated with reduced aneurysm growth.
Collapse
Affiliation(s)
- Aaron Becker von Rose
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar Technical University Munich, Munich, Germany
| | - Kathrin Kobus
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Bianca Bohmann
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Moritz Lindquist-Lilljequist
- Stockholm Aneurysm Research Group (STAR), Department of Vascular Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna
| | - Florian Bassermann
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar Technical University Munich, Munich, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Matthias Trenner
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Division of Vascular Medicine, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna
| | - Joy Roy
- Stockholm Aneurysm Research Group (STAR), Department of Vascular Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Hultgren
- Stockholm Aneurysm Research Group (STAR), Department of Vascular Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt J Schwaiger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|