1
|
Lu J, Ma H, Wang Q, Song Z, Wang J. Chemotherapy-mediated lncRNA-induced immune cell plasticity in cancer immunopathogenesis. Int Immunopharmacol 2024; 141:112967. [PMID: 39181018 DOI: 10.1016/j.intimp.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Tumor cells engage with the immune system in a complex manner, utilizing evasion and adaptability mechanisms. The development of cancer and resistance to treatment relies on the ability of immune cells to adjust their phenotype and function in response to cues from the tumor microenvironment, known as immunological cell plasticity. This study delves into the role of long non-coding RNAs (lncRNAs) in enhancing immune cell flexibility in cancer, focusing on their regulatory actions in the tumor microenvironment and potential therapeutic implications. Through a comprehensive review of existing literature, the study analyzes the impact of lncRNAs on macrophages, T-cells, and MDSCs, as well as the influence of cytokines and growth factors like TNF, IL-6, HGF, and TGFβ on immunological cell plasticity and tumor immunoediting. LncRNAs exert a strong influence on immune cell plasticity through mechanisms such as transcriptional regulation, post-transcriptional modifications, and chromatin remodeling. These RNA molecules intricately modulate gene expression networks, acting as scaffolding, decoys, guides, and sponges. Moreover, both direct cell-cell interactions and soluble chemicals in the tumor microenvironment contribute to enhancing immune cell activation and survival. Understanding the influence of lncRNAs on immune cell flexibility sheds light on the biological pathways of immune evasion and cancer progression. Targeting long non-coding RNAs holds promise for amplifying anti-tumor immunity and overcoming drug resistance in cancer treatment. However, further research is necessary to determine the therapeutic potential of manipulating lncRNAs in the tumor microenvironment.
Collapse
Affiliation(s)
- Jingyuan Lu
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Qian Wang
- Division of Hematology and Solid Tumor Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Zhiheng Song
- Plasma Applied Physics Lab, C&J Nyheim Plasma Institute, Drexel University, 200 Federal St, Suite 500, Camden, NJ 08103.
| | - Jinli Wang
- School of Medicine, Department of Epidemiology and Biochemistry and Molecular & Cellular Biology, Georgetown University, 3700 O ST NW, Washington, DC 20057.
| |
Collapse
|
2
|
Zhao X, van den Berg A, Winkle M, Koerts J, Seitz A, de Jong D, Rutgers B, van der Sluis T, Bakker E, Kluiver J. Proliferation-promoting roles of linear and circular PVT1 are independent of their ability to bind miRNAs in B-cell lymphoma. Int J Biol Macromol 2023; 253:126744. [PMID: 37689284 DOI: 10.1016/j.ijbiomac.2023.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Plasmacytoma Variant Translocation 1 (PVT1) is a long non-coding RNA located at 8q24.21 immediately downstream of MYC. Both the linear and circular PVT1 transcripts contribute to cancer pathogenesis by binding microRNAs. However, little is known about their roles in B-cell lymphoma. Here we studied their expression patterns, role in growth, and ability to bind miRNAs in B-cell lymphoma. Linear PVT1 transcripts were downregulated in B-cell cell lymphoma lines compared to germinal center B cells, while circPVT1 levels were increased. Two Hodgkin lymphoma cell lines had a homozygous deletion including the 5' region of the PVT1 locus, resulting in a complete lack of circPVT1 and 5' linear PVT1 transcripts. Inhibition of both linear and circular PVT1 decreased growth of Burkitt lymphoma, while the effects on Hodgkin lymphoma and diffuse large B cell lymphoma were less pronounced. Overexpression of circPVT1 promoted growth of B-cell lymphoma lacking or having low endogenous circPVT1 levels. Contrary to other types of cancer, linear and circular PVT1 transcripts did not interact with miRNAs in B-cell lymphoma. Overall, we showed an opposite expression pattern of linear and circular PVT1 in B-cell lymphoma. Their effect on growth was independent of their ability to bind miRNAs.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tineke van der Sluis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Emke Bakker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
3
|
Lu S, Zeng L, Mo G, Lei D, Li Y, Ou G, Wu H, Sun J, Rong C, He S, Zhong D, Ke Q, Zhang Q, Tan X, Cen H, Xie X, Liao C. Long non-coding RNA SNHG17 may function as a competitive endogenous RNA in diffuse large B-cell lymphoma progression by sponging miR-34a-5p. PLoS One 2023; 18:e0294729. [PMID: 37988356 PMCID: PMC10662735 DOI: 10.1371/journal.pone.0294729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
We investigated the functional mechanism of long non-coding small nucleolar host gene 17 (SNHG17) in diffuse large B-cell lymphoma (DLBCL). lncRNAs related to the prognosis of patients with DLBCL were screened to analyze long non-coding small nucleolar host gene 17 (SNHG17) expression in DLBCL and normal tissues, and a nomogram established for predicting DLBCL prognosis. SNHG17 expression in B-cell lymphoma cells was detected using qPCR. The effects of SNHG17 with/without doxorubicin on the proliferation and apoptosis of DoHH2 and Daudi were detected. The effects of combined SNHG17 and doxorubicin were analyzed. The regulatory function of SNHG17 in DLBCL was investigated using a mouse tumor xenotransplantation model. RNA sequencing was used to analyze the signaling pathways involved in SNHG17 knockdown in B-cell lymphoma cell lines. The target relationships among SNHG17, microRNA, and downstream mRNA biomolecules were detected. A higher SNHG17 level predicted a lower survival rate. SNHG17 was highly expressed in DLBCL patient tissues and cell lines. We established a prognostic model containing SNHG17 expression, which could effectively predict the overall survival rate of DLBCL patients. SNHG17 knockdown inhibited the proliferation and induced the apoptosis of B-cell lymphoma cells, and the combination of SNHG17 and doxorubicin had a synergistic effect. SNHG17, miR-34a-5p, and ZESTE gene enhancer homolog 2 (EZH2) had common hypothetical binding sites, and the luciferase reporter assay verified that miR-34a-5p was the direct target of SNHG17, and EZH2 was the direct target of miR-34a-5p. The carcinogenic function of SNHG17 in the proliferation and apoptosis of DLBCL cells was partially reversed by a miR-34a-5p inhibitor. SNHG17 increases EZH2 levels by inhibiting miR-34a-5p. Our findings indicate SNHG17 as critical for promoting DLBCL progression by regulating the EZH2 signaling pathway and sponging miR-34a-5p. These findings provide a new prognostic marker and therapeutic target for the prognosis and treatment of DLBCL.
Collapse
Affiliation(s)
- Shengjuan Lu
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Zeng
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guojun Mo
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Danqing Lei
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuanhong Li
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guodi Ou
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hailian Wu
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jie Sun
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chao Rong
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha He
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dani Zhong
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qing Ke
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaohong Tan
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong Cen
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Chengcheng Liao
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
4
|
Duns G, Winkle M, Chong L, Ennishi D, Morin RD, Diepstra A, Scott DW, Kluiver JL, Steidl C, van den Berg A. Long non-coding RNAs associated with transcriptomic signatures and treatment outcome in diffuse large B-cell lymphoma. Br J Haematol 2023. [PMID: 37190862 DOI: 10.1111/bjh.18870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Lauren Chong
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daisuke Ennishi
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arjan Diepstra
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Joost L Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
5
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Liang YL, Zhang Y, Tan XR, Qiao H, Liu SR, Tang LL, Mao YP, Chen L, Li WF, Zhou GQ, Zhao Y, Li JY, Li Q, Huang SY, Gong S, Zheng ZQ, Li ZX, Sun Y, Jiang W, Ma J, Li YQ, Liu N. A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma. Nat Commun 2022; 13:2996. [PMID: 35637194 PMCID: PMC9151760 DOI: 10.1038/s41467-022-30709-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence has revealed the roles of long noncoding RNAs (lncRNAs) as tumor biomarkers. Here, we introduce an immune-associated nine-lncRNA signature for predicting distant metastasis in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). The nine lncRNAs are identified through microarray profiling, followed by RT-qPCR validation and selection using a machine learning method in the training cohort (n = 177). This nine-lncRNA signature classifies patients into high and low risk groups, which have significantly different distant metastasis-free survival. Validations in the Guangzhou internal (n = 177) and Guilin external (n = 150) cohorts yield similar results, confirming that the signature is an independent risk factor for distant metastasis and outperforms anatomy-based metrics in identifying patients with high metastatic risk. Integrative analyses show that this nine-lncRNA signature correlates with immune activity and lymphocyte infiltration, which is validated by digital pathology. Our results suggest that the immune-associated nine-lncRNA signature can serve as a promising biomarker for metastasis prediction in LA-NPC.
Collapse
Affiliation(s)
- Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yuan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song-Ran Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Long Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yan-Ping Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Lei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Wen-Fei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Wei Jiang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Tao S, Chen Y, Hu M, Xu L, Fu CB, Hao XB. LncRNA PVT1 facilitates DLBCL development via miR-34b-5p/Foxp1 pathway. Mol Cell Biochem 2022; 477:951-963. [DOI: 10.1007/s11010-021-04335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022]
|
8
|
Cai J, Tian X, Ma S, Zhong L, Li W, Wang L, Guo L, Li Z, Wu Y, Zhong G, Huang H, Xia Z, Xia Y, Liu P, Su N, Fang Y, Zhang Y, Cai Q. A nomogram prognostic index for risk-stratification in diffuse large B-cell lymphoma in the rituximab era: a multi-institutional cohort study. Br J Cancer 2021; 125:402-412. [PMID: 34012033 PMCID: PMC8329293 DOI: 10.1038/s41416-021-01434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We aimed to establish a predictive prognostic risk-stratification model for diffuse large B-cell lymphoma (DLBCL) in the rituximab era. METHODS The data of 1406 primary DLBCL patients from the Sun Yat-Sen University Cancer Center were analysed to establish a nomogram prognostic index (NPI) model for predicting overall survival (OS) based on pre-treatment indicators. An independent cohort of 954 DLBCL patients from three other hospitals was used for external validation. RESULTS Age, performance status, stage, lactate dehydrogenase, number of extranodal sites, BCL2, CD5 expression, B symptoms and absolute lymphocyte and monocyte count were the main factors of the NPI model and could stratify the patients into four distinct categories based on their predicted OS. The calibration curve demonstrated satisfactory agreement between the predicted and actual 5-year OS of the patients. The concordance index of the NPI model (0.794) was higher than the IPI (0.759) and NCCN-IPI (0.750), and similar results were obtained upon external validation. For CD5 + DLBCL patients, systemic treatment with high-dose methotrexate was associated with superior OS compared to R-CHOP-based immunochemotherapy alone. CONCLUSIONS We established and validated an accurate prediction model, which performed better than IPI and NCCN-IPI for prognostic stratification of DLBCL patients.
Collapse
Affiliation(s)
- Jun Cai
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaopeng Tian
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shuyun Ma
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Liye Zhong
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wenyu Li
- grid.410643.4Lymphoma Division, Cancer Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Liang Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Linlang Guo
- grid.284723.80000 0000 8877 7471Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zhihua Li
- grid.12981.330000 0001 2360 039XDepartment of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yudan Wu
- grid.12981.330000 0001 2360 039XDepartment of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Guangzheng Zhong
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Huiqiang Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhongjun Xia
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Hematology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yi Xia
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Panpan Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ning Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yu Fang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuchen Zhang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qingqing Cai
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China ,grid.488530.20000 0004 1803 6191Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|