1
|
Egriboz O, Fehrholz M, Tsutsumi M, Sousa M, Cheret J, Funk W, Kückelhaus M, Paus R, Kajiya K, Piccini I, Bertolini M. The Melanocyte and Nerve Fiber Cross-Talk, Facilitated Also by Semaphorin-4A, Enhances UV-B-Induced Melanogenesis. Pigment Cell Melanoma Res 2025; 38:e13217. [PMID: 39835739 DOI: 10.1111/pcmr.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture. Comparative transcriptomic analysis between laser-capture-microdissected melanocytes from freshly embedded human skin and published microarray data on in vitro primary melanocytes identified Semaphorin-4A (SEMA4A) as possible mediator of melanocyte-nerve fibers interactions. SEMA4A protein levels in Gp100+-epidermal melanocytes were significantly higher in re-innervated skin, and reduced by UV-B treatment. Analysis of melanocytes in vitro showed reduced SEMA4A protein expression 24 h after UV-B-irradiation while SEMA4A secretion into the medium was increased. Beta-tubulin expression and axon growth in sensory neurons were stimulated by conditioned media (CM) from UV-B irradiated melanocytes. When this neuronal-conditioned medium was transferred to fresh melanocytes, melanin content increased, but only if neurons had been treated with CM from UV-B irradiated melanocytes. These findings highlight the importance of melanocyte-neuron interactions for UV-B-induced melanogenesis and suggest that secreted proteins (e.g., SEMA4A) can function as a novel target to treat hypo- and hyperpigmentation disorders.
Collapse
Affiliation(s)
- Onur Egriboz
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
- DWI Labs, Deriworks A.S., Istanbul, Turkiye
| | | | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Marta Sousa
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | - Jeremy Cheret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations GmbH, Hamburg & Berlin, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery Dr. Dr. Med. Funk, Munich, Germany
| | | | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations GmbH, Hamburg & Berlin, Germany
| | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Ilaria Piccini
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | | |
Collapse
|
2
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutierrez-Uzquiza A, Fuster G, Bragado P. Role of semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co-receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Ma S, Pu C. miR-129-2-3p binds SEMA4C to regulate HCC development and inhibit the EMT. Mutat Res 2024; 829:111872. [PMID: 39018715 DOI: 10.1016/j.mrfmmm.2024.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Among primary liver cancers, HCC is the most prevalent. Small noncoding RNAs called miRNAs control the expression of downstream target genes to take part in a variety of physiological and pathological processes, including those related to cancer. METHODS miR-129-2-3p and SEMA4C expression levels were assessed using RT-qPCR. The CCK-8, invasion, and wound healing assays were used to confirm the capacity of HCC cells for proliferation, invasion and migration respectively. Serum SEMA4C levels were detected via ELISA. The RIP and dual-luciferase reporter assays were used to confirm the existence of intergenic binding sites. Cell apoptosis assay and cell cycle assay were performed to detect the apoptosis rate and cycle distribution of cells, and WB was performed to detect the protein expression of SEMA4C, RhoA, ROCK1, E-cadherin, N-cadherin, and vimentin. Furthermore, cancer-inhibiting role of miR-129-2-3p were further confirmed by animal tests. RESULTS miR-129-2-3p expression was reduced in HCC tissues and cells. Overexpression of miR-129-2-3p decreased the proliferation, invasion, migration, and EMT in HCC cells, whereas inhibition of miR-129-2-3p had the opposite effects. Our research also showed that SEMA4C was increased in HCC tissues, serum and cells, and that SEMA4C knockdown prevented HCC cell invasion, migration, proliferation, and EMT. Overexpression of SEMA4C reversed the inhibitory effect of miR-129-2-3p on HCC. CONCLUSIONS Overall, we discovered that through binding to SEMA4C, miR-129-2-3p regulates HCC cell proliferation, invasion, migration, and EMT.
Collapse
Affiliation(s)
- Siyuan Ma
- School of Laboratory Medicine, Wannan Medical College, China.
| | - Chun Pu
- School of Laboratory Medicine, Wannan Medical College, China.
| |
Collapse
|
4
|
Aiyappa-Maudsley R, McLoughlin LFV, Hughes TA. Semaphorins and Their Roles in Breast Cancer: Implications for Therapy Resistance. Int J Mol Sci 2023; 24:13093. [PMID: 37685898 PMCID: PMC10487980 DOI: 10.3390/ijms241713093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer is the most common cancer worldwide and a leading cause of cancer-related deaths in women. The clinical management of breast cancer is further complicated by the heterogeneous nature of the disease, which results in varying prognoses and treatment responses in patients. The semaphorins are a family of proteins with varied roles in development and homoeostasis. They are also expressed in a wide range of human cancers and are implicated as regulators of tumour growth, angiogenesis, metastasis and immune evasion. More recently, semaphorins have been implicated in drug resistance across a range of malignancies. In breast cancer, semaphorins are associated with resistance to endocrine therapy as well as breast cancer chemotherapeutic agents such as taxanes and anthracyclines. This review will focus on the semaphorins involved in breast cancer progression and their association with drug resistance.
Collapse
Affiliation(s)
| | | | - Thomas A. Hughes
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (R.A.-M.); (L.F.V.M.)
- School of Science, Technology and Health, York St John University, York YO31 7EX, UK
| |
Collapse
|
5
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
6
|
Jiang J, Zhang F, Wan Y, Fang K, Yan ZD, Ren XL, Zhang R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front Oncol 2022; 12:793805. [PMID: 35155237 PMCID: PMC8830438 DOI: 10.3389/fonc.2022.793805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Semaphorins are a large class of secreted or membrane-bound molecules. It has been reported that semaphorins play important roles in regulating several hallmarks of cancer, including angiogenesis, metastasis, and immune evasion. Semaphorins and their receptors are widely expressed on tumor cells and immune cells. However, the biological role of semaphorins in tumor immune microenvironment is intricate. The dysregulation of semaphorins influences the recruitment and infiltration of immune cells, leading to abnormal anti-tumor effect. Although the underlying mechanisms of semaphorins on regulating tumor-infiltrating immune cell activation and functions are not fully understood, semaphorins can notably be promising immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fang Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ke Fang
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ze-Dong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xin-Ling Ren
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|