1
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
2
|
Shu G, Chen K, Li J, Liu B, Chen X, Wang J, Hu X, Lu W, Huang H, Zhang S. Galangin alleviated Doxorubicin-induced cardiotoxicity by inhibiting ferroptosis through GSTP1/JNK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155989. [PMID: 39217656 DOI: 10.1016/j.phymed.2024.155989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a potent anticancer medication, but its significant cardiotoxicity poses a challenge in clinical practice. Galangin (Gal), a flavonoid compound with diverse pharmacological activities, has shown potential in exerting cardioprotective effects. However, the related molecular mechanism has not been fully elucidated. PURPOSE Combined with bioinformatics and experimental verification methods to investigate Gal's potential role and underlying mechanisms in mitigating DOX-induced cardiotoxicity (DIC). METHODS C57BL/6 mice received a single dose of DOX via intraperitoneal injection 4 days before the end of the gavage period with Gal. Myocardial injury was evaluated using echocardiography, myocardial injury biomarkers, Sirius Red and H&E staining. H9c2 cells were stimulated with DOX to mimic DIC in vitro. The potential therapeutic target of Gal was identified through network pharmacology, molecular docking and cellular thermal shift assay (CETSA), complemented by an in-depth exploration of the GSTP1/JNK signaling pathway using immunofluorescence. Subsequently, the GSTP1 inhibitor Ezatiostat (Eza) substantiated the signaling pathway. RESULTS Gal administration considerably raised DOX-inhibited the left ventricular ejection fractions (LVEF), reduced levels of myocardial injury markers (c-TnI, c-TnT, CKMB, LDH, and AST), and alleviated DOX-induced myocardial histopathological injury and fibrosis in mice, thereby improving cardiac dysfunction. The ferroptosis induced by DOX was inhibited by Gal treatment. Gal remarkably ameliorated the DOX-induced lipid peroxidation, accumulation of iron and Ptgs2 expression both in H9c2 cells and cardiac tissue. Furthermore, Gal effectively rescued the DOX-inhibited crucial regulators of ferroptosis such as Gpx4, Nrf2, Fpn, and Slc7a11. The mechanistic investigations revealed that Glutathione S-transferase P1 (GSTP1) may be a potential target for Gal in attenuating DIC. Gal act on GSTP1 by stimulating its expression, thereby enhancing the interaction between GSTP1 and c-Jun N-terminal kinase (JNK), leading to the deactivation of JNK/c-Jun pathway. Furthermore, interference of GSTP1 with inhibitor Eza abrogated the cardioprotective and anti-ferroptotic effects of Gal, as evidenced by decreased cell viability, reduced expression of GSTP1 and Gpx4, elevated MDA levels, and promoted phosphorylation of JNK and c-Jun compared with Gal treatment. CONCLUSION Gal could inhibit ferroptosis and protect against DIC through regulating the GSTP1/JNK pathway. Our research has identified a novel pathway through which Gal regulates DIC, providing valuable insights into the potential therapeutic efficacy of Gal in mitigating cardiotoxic effects.
Collapse
Affiliation(s)
- Guangjie Shu
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Ke Chen
- Jincheng Second People's Hospital, Shanxi, China
| | - Junyan Li
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Bing Liu
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Xi Chen
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Jian Wang
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Xiaoshuang Hu
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Wenxin Lu
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Huiru Huang
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou; Food Laboratory of Zhongyuan, Luohe, China.
| |
Collapse
|
3
|
Zhang X, Huang C, Hou Y, Jiang S, Zhang Y, Wang S, Chen J, Lai J, Wu L, Duan H, He S, Liu X, Yu S, Cai Y. Research progress on the role and mechanism of Sirtuin family in doxorubicin cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155673. [PMID: 38677274 DOI: 10.1016/j.phymed.2024.155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a widely utilized anthracycline chemotherapy drug in cancer treatment, yet its efficacy is hindered by both short-term and long-term cardiotoxicity. Although oxidative stress, inflammation and mitochondrial dysfunction are established factors in DOX-induced cardiotoxicity, the precise molecular pathways remain elusive. Further exploration of the pathogenesis and identification of novel molecular targets are imperative. Recent studies have implicated the Sirtuins family in various physiological and pathological processes, suggesting their potential in ameliorating DOX-induced cardiotoxicity. Moreover, research on Sirtuins has discovered small-molecule compounds or medicinal plants with regulatory effects, representing a notable advancement in preventing and treating DOX-induced cardiac injury. PURPOSE In this review, we delve into the pathogenesis of DOX-induced cardiotoxicity and explore the therapeutic effects of Sirtuins in mitigating this condition, along with the associated molecular mechanisms. Furthermore, we delineate the roles and mechanisms of small-molecule regulators of Sirtuins in the prevention and treatment of DOX-induced cardiotoxicity. STUDY-DESIGN/METHODS Data for this review were sourced from various scientific databases (such as Web of Science, PubMed and Science Direct) up to March 2024. Search terms included "Sirtuins," "DOX-induced cardiotoxicity," "DOX," "Sirtuins regulators," "histone deacetylation," among others, as well as several combinations thereof. RESULTS Members of the Sirtuins family regulate both the onset and progression of DOX-induced cardiotoxicity through anti-inflammatory, antioxidative stress and anti-apoptotic mechanisms, as well as by maintaining mitochondrial stability. Moreover, natural plant-derived active compounds such as Resveratrol (RES), curcumin, berberine, along with synthetic small-molecule compounds like EX527, modulate the expression and activity of Sirtuins. CONCLUSION The therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity represents a potential molecular target. However, further research is urgently needed to elucidate the relevant molecular mechanisms and to assess the safety and biological activity of Sirtuins regulators. This review offers an in-depth understanding of the therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity, providing a preliminary basis for the clinical application of Sirtuins regulators in this condition.
Collapse
Affiliation(s)
- Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Qingyuan 511500, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianmei Lai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lifeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinyi Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
4
|
Perico L, Remuzzi G, Benigni A. Sirtuins in kidney health and disease. Nat Rev Nephrol 2024; 20:313-329. [PMID: 38321168 DOI: 10.1038/s41581-024-00806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|