1
|
Ikeda Y, Yasuhara R, Tanaka J, Ida-Yonemochi H, Akiyama H, Otsu K, Miyamoto I, Harada H, Yamada H, Fukada T, Irié T. PLAG1 overexpression in salivary gland duct-acinar units results in epithelial tumors with acinar-like features: Tumorization of luminal stem/progenitor cells may result in the development of salivary gland tumors consisting of only luminal cells. J Oral Biosci 2024:S1349-0079(24)00192-0. [PMID: 39159676 DOI: 10.1016/j.job.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVES Details about salivary gland tumor histogenesis remain unknown. Here, we established a newly generated murine salivary gland tumor model that could overexpress pleomorphic adenoma gene 1 (PLAG1) and attempted to clarify the events that occur during the early phase of salivary gland tumor histogenesis. METHODS Salivary gland tumors were generated using murine models (Sox9IRES-CreERT2; ROSA26-PLAG1). Lineage tracing of Sox9-expressing cells was performed using Sox9IRES-CreERT2; ROSA26-tdTomato mice, which were generated by crossing Sox9CreERT2/- and ROSA26-tdTomato mice (expressing the tdTomato fluorescent protein). Organ-cultured embryonic salivary glands from the murine model were morphologically analyzed, and mRNA sequencing was conducted two days after tumor induction for gene enrichment and functional annotation analysis. RESULTS Salivary gland tumors exhibited epithelial features with acinar-like structures because of gene rearrangements in the luminal cells. Structural disturbances in the duct-acinar unit of the salivary gland were observed and cancer-related pathways were enriched among the differentially upregulated genes in the early phase of tumor induction in an organ-cultured embryonic salivary gland tumor model. CONCLUSIONS The newly generated murine salivary gland tumor model may show that the tumorization of luminal stem/progenitor cells can result in the development of salivary gland tumors comprising only luminal cells.
Collapse
Affiliation(s)
- Yunosuke Ikeda
- Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata, 951-8514, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Ikuya Miyamoto
- Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita-13 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0813, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima 770-8055, Japan
| | - Tarou Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
2
|
Horio Y, Kuroda H, Masago K, Matsushita H, Sasaki E, Fujiwara Y. Current diagnosis and treatment of salivary gland-type tumors of the lung. Jpn J Clin Oncol 2024; 54:229-247. [PMID: 38018262 DOI: 10.1093/jjco/hyad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Salivary gland-type tumors of the lung are thought to originate from the submucosal exocrine glands of the large airways. Due to their rare occurrence, reports of their study are limited to small-scale or case reports. Therefore, daily clinical practices often require a search for previous reports. In the last 20 years, several genetic rearrangements have been identified, such as MYB::NF1B rearrangements in adenoid cystic carcinoma, CRTC1::MAML2 rearrangements in mucoepidermoid carcinoma, EWSR1::ATF1 rearrangements in hyalinizing clear cell carcinoma and rearrangements of the EWSR1 locus or FUS (TLS) locus in myoepithelioma and myoepithelial carcinoma. These molecular alterations have been useful in diagnosing these tumors, although they have not yet been linked to molecularly targeted therapies. The morphologic, immunophenotypic, and molecular characteristics of these tumors are similar to those of their counterparts of extrapulmonary origin, so clinical and radiologic differential diagnosis is required to distinguish between primary and metastatic disease of other primary sites. However, these molecular alterations can be useful in differentiating them from other primary lung cancer histologic types. The management of these tumors requires broad knowledge of the latest diagnostics, surgery, radiotherapy, bronchoscopic interventions, chemotherapy, immunotherapy as well as therapeutic agents in development, including molecularly targeted agents. This review provides a comprehensive overview of the current diagnosis and treatment of pulmonary salivary gland tumors, with a focus on adenoid cystic carcinoma and mucoepidermoid carcinoma, which are the two most common subtypes.
Collapse
Affiliation(s)
- Yoshitsugu Horio
- Department of Outpatient Services, Aichi Cancer Center Hospital, Nagoya, Japan
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
- Department of Thoracic Surgery, Teikyo University Hospital, Mizonokuchi, Kanagawa-prefecture, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
3
|
Tasoulas J, Srivastava S, Xu X, Tarasova V, Maniakas A, Karreth FA, Amelio AL. Genetically engineered mouse models of head and neck cancers. Oncogene 2023; 42:2593-2609. [PMID: 37474617 PMCID: PMC10457205 DOI: 10.1038/s41388-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The head and neck region is one of the anatomic sites commonly afflicted by cancer, with ~1.5 million new diagnoses reported worldwide in 2020 alone. Remarkable progress has been made in understanding the underlying disease mechanisms, personalizing care based on each tumor's individual molecular characteristics, and even therapeutically exploiting the inherent vulnerabilities of these neoplasms. In this regard, genetically engineered mouse models (GEMMs) have played an instrumental role. While progress in the development of GEMMs has been slower than in other major cancer types, several GEMMs are now available that recapitulate most of the heterogeneous characteristics of head and neck cancers such as the tumor microenvironment. Different approaches have been employed in GEMM development and implementation, though each can generally recapitulate only certain disease aspects. As a result, appropriate model selection is essential for addressing specific research questions. In this review, we present an overview of all currently available head and neck cancer GEMMs, encompassing models for head and neck squamous cell carcinoma, nasopharyngeal carcinoma, and salivary and thyroid gland carcinomas.
Collapse
Affiliation(s)
- Jason Tasoulas
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonal Srivastava
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Valentina Tarasova
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
4
|
The Semaphorin 3A-AKT axis-mediated cell proliferation in salivary gland morphogenesis and adenoid cystic carcinoma pathogenesis. Pathol Res Pract 2022; 236:153991. [PMID: 35759940 DOI: 10.1016/j.prp.2022.153991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
We recently demonstrated that Semaphorin 3 A (Sema3A), the expression of which is negatively regulated by Wnt/β-catenin signaling, promotes odontogenic epithelial cell proliferation, suggesting the involvement of Sema3A in tooth germ development. Salivary glands have a similar developmental process to tooth germ development, in which reciprocal interactions between the oral epithelium and adjacent mesenchyme proceeds via stimulation with several growth factors; however, the role of Sema3A in the development of salivary glands is unknown. There may thus be a common mechanism between epithelial morphogenesis and pathogenesis; however, the role of Sema3A in salivary gland tumors is also unclear. The current study investigated the involvement of Sema3A in submandibular gland (SMG) development and its expression in adenoid cystic carcinoma (ACC) specimens. Quantitative RT-PCR and immunohistochemical analyses revealed that Sema3A was expressed both in epithelium and in mesenchyme in the initial developmental stages of SMG and their expressions were decreased during the developmental processes. Loss-of-function experiments using an inhibitor revealed that Sema3A was required for AKT activation-mediated cellular growth and formation of cleft and bud in SMG rudiment culture. In addition, Wnt/β-catenin signaling decreased the Sema3A expression in the rudiment culture. ACC arising from salivary glands frequently exhibits malignant potential. Immunohistochemical analyses of tissue specimens obtained from 10 ACC patients showed that Sema3A was hardly observed in non-tumor regions but was strongly expressed in tumor lesions, especially in myoepithelial neoplastic cells, at high frequencies where phosphorylated AKT expression was frequently detected. These results suggest that the Sema3A-AKT axis promotes cell growth, thereby contributing to morphogenesis and pathogenesis, at least in ACC, of salivary glands.
Collapse
|
5
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer. Cells 2022; 11:cells11091382. [PMID: 35563688 PMCID: PMC9106060 DOI: 10.3390/cells11091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.
Collapse
|
6
|
A Contemporary Review of Molecular Therapeutic Targets for Adenoid Cystic Carcinoma. Cancers (Basel) 2022; 14:cancers14040992. [PMID: 35205740 PMCID: PMC8869877 DOI: 10.3390/cancers14040992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Adenoid cystic carcinoma (ACC) is a salivary malignancy known for slow growth, a propensity for perineural spread, local recurrence following resection, and indolent distant metastases. Current treatments in recurrent/metastatic (R/M) ACC are generally of limited impact and often palliative in nature. Herein, we review the preclinical and clinical literature on molecular alterations in ACC with the potential for targeted therapeutics. We further review other molecular targets of ongoing investigation and active clinical trials for patients with ACC, offering a contemporary summary and insight into future therapeutic strategies. Abstract ACC is a rare malignant tumor of the salivary glands. In this contemporary review, we explore advances in identification of targetable alterations and clinical trials testing these druggable targets. A search of relevant articles and abstracts from national meetings and three databases, including PubMed, Medline, and Web of Science, was performed. Following keyword search analysis and double peer review of abstracts to ensure appropriate fit, a total of 55 manuscripts were included in this review detailing advances in molecular targets for ACC. The most researched pathway associated with ACC is the MYB–NFIB translocation, found to lead to dysregulation of critical cellular pathways and thought to be a fundamental driver in a subset of ACC disease pathogenesis. Other notable molecular targets that have been studied include the cKIT receptor, the EGFR pathway, and NOTCH1, all with limited efficacy in clinical trials. The ongoing investigation of molecular abnormalities underpinning ACC that may be responsible for carcinogenesis is critical to identifying and developing novel targeted therapies.
Collapse
|
7
|
Witte HM, Gebauer N, Steinestel K. Mutational and immunologic Landscape in malignant Salivary Gland Tumors harbor the potential for novel therapeutic strategies. Crit Rev Oncol Hematol 2022; 170:103592. [PMID: 35026433 DOI: 10.1016/j.critrevonc.2022.103592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Salivary gland carcinomas (SGC) are rare (3-6 % of all head and neck cancers) and show biological heterogeneity depending on the respective histological subtype. While complete surgical resection is the standard treatment for localized disease, chemotherapy or radiation therapy are frequently insufficient for the treatment of unresectable or metastasized SGC. Therefore, new therapeutic approaches such as molecularly targeted therapy or the application of immune checkpoint inhibition enhance the treatment repertoire. Accordingly, comprehensive analyses of the genomic landscape and the tumor-microenvironment (TME) are of crucial importance in order to optimize and individualize SGC treatment. This manuscript combines the current scientific knowledge of the composition of the mutational landscape and the TME in SGCs harboring the potential for novel (immune-) targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Luebeck, 23538, Luebeck, Germany; Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany; Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany.
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Luebeck, 23538, Luebeck, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| |
Collapse
|
8
|
Liu Z, Gao J, Yang Y, Zhao H, Ma C, Yu T. Potential targets identified in adenoid cystic carcinoma point out new directions for further research. Am J Transl Res 2021; 13:1085-1108. [PMID: 33841642 PMCID: PMC8014416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Adenoid cystic carcinoma (AdCC) of the head and neck originates from salivary glands, with high risks of recurrence and metastasis that account for the poor prognosis of patients. The purpose of this research was to identify key genes related to AdCC for further investigation of their diagnostic and prognostic significance. In our study, the AdCC sample datasets GSE36820, GSE59702 and GSE88804 from the Gene Expression Omnibus (GEO) database were used to explore the abnormal coexpression of genes in AdCC compared with their expression in normal tissue. A total of 115 DEGs were obtained by screening with GEO2R and FunRich software. According to functional annotation analysis using Enrichr, these DEGs were mainly enriched in the SOX2, AR, SMAD and MAPK signaling pathways. A protein-protein network of the DEGs was established by the Search Tool for the Retrieval of Interacting Genes (STRING) and annotated through the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and was shown to be enriched with proteins involved in cardiac muscle cell proliferation and extracellular matrix organization. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that ITGA9, LAMB1 and BAMBI were associated with the PI3K-Akt and TGF-β pathways. Furthermore, 36 potential target miRNAs were identified by the OncomiR and miRNA Pathway Dictionary Database (miRPathDB). In conclusion, SLC22A3, FOXP2, Cdc42EP3, COL27A1, DUSP1 and HSPB8 played critical roles according to the enrichment analysis; ITGA9, LAMB1 and BAMBI were involved in significant pathways according to the KEGG analysis; ST3Gal4 is a pivotal component of the PPI network of all the DEGs obtained; SPARC, COL4A2 and PRELP were highly related to multiple malignancies in pan-cancer research; hsa-miR-29-3p, hsa-miR-132-3p and hsa-miR-708-5p were potential regulators in AdCC. The involved pathways, biological processes and miRNAs have been shown to play significant roles in the genesis, growth, invasion and metastasis of AdCC. In this study, these identified DEGs were considered to have a potential influence on AdCC but have not been studied in this disease. The analysis results promote our understanding of the molecular mechanisms and biological processes of AdCC, which might be useful for targeted therapy or diagnosis.
Collapse
Affiliation(s)
- Zhenan Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Jian Gao
- Department of Stomatology, Xintai Hospital of Traditional Chinese MedicineTaian, China
| | - Yihui Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Huaqiang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Chuan Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Tingting Yu
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological HospitalJinan, China
| |
Collapse
|
9
|
Han Z, Yang B, Wang Q, Hu Y, Wu Y, Tian Z. Comprehensive analysis of the transcriptome-wide m 6A methylome in invasive malignant pleomorphic adenoma. Cancer Cell Int 2021; 21:142. [PMID: 33653351 PMCID: PMC7923655 DOI: 10.1186/s12935-021-01839-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Invasive malignant pleomorphic adenoma (IMPA) is a highly invasive parotid gland tumor and lacks effective therapy. N6-Methyladenosine (m6A) is the most prevalent post-transcriptional modification of mRNAs in eukaryotes and plays an important role in the pathogenesis of multiple tumors. However, the significance of m6A-modified mRNAs in IMPA has not been elucidated to date. Hence, in this study, we attempted to profile the effect of IMPA in terms of m6A methylation in mRNA. Methods Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were utilized to acquire the first transcriptome-wide profiling of the m6A methylome map in IMPA followed by bioinformatics analysis. Results In this study, we obtained m6A methylation maps of IMPA samples and normal adjacent tissues through MeRIP-seq. In total, 25,490 m6A peaks associated with 13,735 genes were detected in the IMPA group, whereas 33,930 m6A peaks associated with 18,063 genes were detected in the control group. Peaks were primarily enriched within coding regions and near stop codons with AAACC and GGAC motifs. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in cancer and metabolism relevant pathways. Furthermore, we identified a relationship between the m6A methylome and the RNA transcriptome, indicating a mechanism by which m6A modulates gene expression. Conclusions Our study is the first to provide comprehensive and transcriptome-wide profiles to determine the potential roles played by m6A methylation in IMPA. These results may open new avenues for in-depth research elucidating the m6A topology of IMPA and the molecular mechanisms governing the formation and progression of IMPA.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Qin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
10
|
Liu X, Yang X, Zhan C, Zhang Y, Hou J, Yin X. Perineural Invasion in Adenoid Cystic Carcinoma of the Salivary Glands: Where We Are and Where We Need to Go. Front Oncol 2020; 10:1493. [PMID: 33014792 PMCID: PMC7461905 DOI: 10.3389/fonc.2020.01493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Adenoid cystic carcinoma of the salivary gland (SACC) is a rare malignant tumors of the head and neck region, but it is one of the most common malignant tumors that are prone to perineural invasion (PNI) of the head and neck. The prognosis of patients with SACC is strongly associated with the presence of perineural spread (PNS). Although many contributing factors have been reported, the mechanisms underlying the preferential destruction of the blood-nerve barrier (BNB) by tumors and the infiltration of the tumor microenvironment by nerve fibers in SACC, have received little research attention. This review summarizes the current knowledge concerning the characteristics of SACC in relation to the PNI, and then highlights the interplay between components of the tumor microenvironment and perineural niche, as well as their contributions to the PNI. Finally, we provide new insights into the possible mechanisms underlying the pathogenesis of PNI, with particular emphasis on the role of extracellular vesicles that may serve as an attractive entry point in future studies.
Collapse
Affiliation(s)
- Xiaohao Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuemin Yin
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li J, Wu Y, Liu H. Expression and role of miR-338-3p in peripheral blood and placenta of patients with pregnancy-induced hypertension. Exp Ther Med 2020; 20:418-426. [PMID: 32537006 PMCID: PMC7282187 DOI: 10.3892/etm.2020.8719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the role of miR-338-3p in pregnancy-induced hypertension (PIH), and its effects on human trophoblast cells in vitro. Quantitative real-time PCR was used to detect miR-338-3p expression. Human trophoblast HTR8/SVneo cells were transfected with miR-338-3p mimics. Effects of miR-338-3p on cell proliferation, invasion and metastasis, and anoikis resistance were detected by CCK-8 assay, Transwell chamber assay, flow cytometry and western blot analysis, respectively. Bioinformatics analysis was performed to predict the target of miR-338-3p, and the results were confirmed by dual luciferase reporter assay. The expression level of miR-338-3p was significantly upregulated in the peripheral blood and placenta of PIH patients. CCK-8 assay showed that miR-338-3p mimics inhibited the proliferation of HTR8/SVneo cells at indicated time points. Flow cytometry showed that miR-338-3p transfection significantly increased the Ki-67 expression in the HTR8/SVneo cells, indicating enhanced cell proliferation. Transwell chamber assay and western blot analysis showed that the invasion and metastatic abilities of the HTR8/SVneo cells were significantly decreased in the miR-338-3p transfection group, as well as expression levels of MMP-2 and MMP-9. Bioinformatics analysis and dual luciferase reporter assay indicated that AKT3 is a target gene of miR-338-3p. Our results suggest that miR-338-3p is significantly increased in the peripheral blood and placenta of PIH patients, which is correlated with the disease development. miR-338-3p inhibits proliferation, invasion and metastasis, and apoptosis resistance of human trophoblast cells by targeting AKT3.
Collapse
Affiliation(s)
- Jun Li
- Fetal Heart Monitoring Unit, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271100, P.R. China
| | - Yan Wu
- The Fifth Department of Obstetrics and Gynecology, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271100, P.R. China
| | - Hui Liu
- Fetal Heart Monitoring Unit, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271100, P.R. China
| |
Collapse
|
12
|
Isono Y, Furuya M, Kuwahara T, Sano D, Suzuki K, Jikuya R, Mitome T, Otake S, Kawahara T, Ito Y, Muraoka K, Nakaigawa N, Kimura Y, Baba M, Nagahama K, Takahata H, Saito I, Schmidt LS, Linehan WM, Kodama T, Yao M, Oridate N, Hasumi H. FLCN alteration drives metabolic reprogramming towards nucleotide synthesis and cyst formation in salivary gland. Biochem Biophys Res Commun 2020; 522:931-938. [PMID: 31806376 PMCID: PMC8195446 DOI: 10.1016/j.bbrc.2019.11.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
FLCN is a tumor suppressor gene which controls energy homeostasis through regulation of a variety of metabolic pathways including mitochondrial oxidative metabolism and autophagy. Birt-Hogg-Dubé (BHD) syndrome which is driven by germline alteration of the FLCN gene, predisposes patients to develop kidney cancer, cutaneous fibrofolliculomas, pulmonary cysts and less frequently, salivary gland tumors. Here, we report metabolic roles for FLCN in the salivary gland as well as their clinical relevance. Screening of salivary glands of BHD patients using ultrasonography demonstrated increased cyst formation in the salivary gland. Salivary gland tumors that developed in BHD patients exhibited an upregulated mTOR-S6R pathway as well as increased GPNMB expression, which are characteristics of FLCN-deficient cells. Salivary gland-targeted Flcn knockout mice developed cytoplasmic clear cell formation in ductal cells with increased mitochondrial biogenesis, upregulated mTOR-S6K pathway, upregulated TFE3-GPNMB axis and upregulated lipid metabolism. Proteomic and metabolite analysis using LC/MS and GC/MS revealed that Flcn inactivation in salivary gland triggers metabolic reprogramming towards the pentose phosphate pathway which consequently upregulates nucleotide synthesis and redox regulation, further supporting that Flcn controls metabolic homeostasis in salivary gland. These data uncover important roles for FLCN in salivary gland; metabolic reprogramming under FLCN deficiency might increase nucleotide production which may feed FLCN-deficient salivary gland cells to trigger tumor initiation and progression, providing mechanistic insight into salivary gland tumorigenesis as well as a foundation for development of novel therapeutics for salivary gland tumors.
Collapse
Affiliation(s)
- Yasuhiro Isono
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama, 236-0004, Japan
| | - Tatsu Kuwahara
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Kae Suzuki
- Department of Urology, Yokohama, 236-0004, Japan
| | | | - Taku Mitome
- Department of Urology, Yokohama, 236-0004, Japan
| | - Shinji Otake
- Department of Urology, Yokohama, 236-0004, Japan
| | | | - Yusuke Ito
- Department of Urology, Yokohama, 236-0004, Japan
| | | | | | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Graduate School of Medical Sciences, Kyorin University, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroyuki Takahata
- Department of Pathology, Shikoku Cancer Center, Matsuyama, Ehime, 791-0280, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|
13
|
Wang X, Li GH. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J Cell Physiol 2018; 233:9447-9457. [PMID: 30136280 PMCID: PMC6221029 DOI: 10.1002/jcp.26833] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
Abstract
Aberrant expressions of microRNAs have been reported to be strongly associated with the progression and prognosis of various tumors, including oral squamous cell carcinoma (OSCC). Recent studies on miRNA expression profiling have suggested that microRNA-16 (miR-16) may be dysregulated in OSCC. However, the tumorigenic roles and mechanisms of miR-16 in OSCC are still largely unknown. In this study, we demonstrated that miR-16 was specifically downregulated in both OSCC patients and cancer cell lines. In addition, functional roles of miR-16 in vitro suggested that the miR-16 mimic inhibited cell proliferation and induced apoptosis, whereas miR-16 inhibitor displayed the opposite effects. Luciferase reporter assay and correlation analysis showed that AKT3 and BCL2L2 were directly targeted by miR-16 and were inversely expressed with miR-16 in OSCC. Moreover, restoration of AKT3 and BCL2L2 expression could partially reverse the cell proliferation inhibition and apoptosis induction caused by miR-16. In xenograft nude mice, miR-16 mimics decreased the expression of AKT3 and BCL2L2 and reduced the tumors volumes and weights, whereas the miR-16 inhibitor exhibited adverse effects in the derived xenografts. In conclusion, the findings suggested that miR-16 functions as a tumor suppressor miRNA to inhibit cell proliferation and induce apoptosis in OSCC through decreasing the oncogenes AKT3 and BCL2L2 and that miR-16 could be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Hui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|