1
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Shokati E, Safari E. The immunomodulatory role of exosomal microRNA networks in the crosstalk between tumor-associated myeloid-derived suppressor cells and tumor cells. Int Immunopharmacol 2023; 120:110267. [PMID: 37276829 DOI: 10.1016/j.intimp.2023.110267] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are considered a heterogeneous group of immature myeloid cells engaging in aggressive tumor progression and metastasis in the tumor microenvironment (TME) of patients diagnosed with cancer, through downregulation of anti-tumor immune responses. Exosomes are small vesicles carrying specific cargos, including proteins, lipids, and MicroRNA (miRNAs). Such exosomal miRNAs delivered by MDSCs and tumor cells are short noncoding RNAs mediating some of the immunosuppressive characteristics of MDSCs in the TME. However, when it comes to cancer diseases, how these miRNAs interact with MDSCs and encourage MDSCs differentiation and function need further investigations. In this review, we discuss MDSC-derived exosomal miRNAs and those derived from tumor cells (TDE) could modulate anti-tumor immunity and regulate the interaction between tumor cells and MDSCs in the TME. Afterward, we focus on dividing miRNAs, as an important substance interacting with MDSCs and tumor cells in the TME, into those have an immunosuppressive or stimulating effect not only on MDSCs expansion, differentiation, and suppressive function but also on tumor evasion.
Collapse
Affiliation(s)
- Elham Shokati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Khowawisetsut L, Vimonpatranon S, Lekmanee K, Sawasdipokin H, Srimark N, Chotivanich K, Pattanapanyasat K. Differential Effect of Extracellular Vesicles Derived from Plasmodium falciparum-Infected Red Blood Cells on Monocyte Polarization. Int J Mol Sci 2023; 24:2631. [PMID: 36768950 PMCID: PMC9916780 DOI: 10.3390/ijms24032631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte's functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16- classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended.
Collapse
Affiliation(s)
- Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sinmanus Vimonpatranon
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kittima Lekmanee
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Hathai Sawasdipokin
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narinee Srimark
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Liang L, Xu X, Li J, Yang C. Interaction Between microRNAs and Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Front Immunol 2022; 13:883683. [PMID: 35634311 PMCID: PMC9130582 DOI: 10.3389/fimmu.2022.883683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells generated during a series of pathologic conditions including cancer. MicroRNA (miRNA) has been considered as a regulator in different tumor microenvironments. Recent studies have begun to unravel the crosstalk between miRNAs and MDSCs. The knowledge of the effect of both miRNAs and MDSCs in tumor may improve our understanding of the tumor immune escape and metastasis. The miRNAs target cellular signal pathways to promote or inhibit the function of MDSCs. On the other hand, MDSCs transfer bioinformation through exosomes containing miRNAs. In this review, we summarized and discussed the bidirectional regulation between miRNAs and MDSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Fudan Zhangjiang Institute of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Liu X, Zhao S, Sui H, Liu H, Yao M, Su Y, Qu P. MicroRNAs/LncRNAs Modulate MDSCs in Tumor Microenvironment. Front Oncol 2022; 12:772351. [PMID: 35359390 PMCID: PMC8963964 DOI: 10.3389/fonc.2022.772351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature cells derived from bone marrow that play critical immunosuppressive functions in the tumor microenvironment (TME), promoting cancer progression. According to base length, Non-coding RNAs (ncRNAs) are mainly divided into: microRNAs (miRNAs), lncRNAs, snRNAs and CircRNAs. Both miRNA and lncRNA are transcribed by RNA polymerase II, and they play an important role in gene expression under both physiological and pathological conditions. The increasing data have shown that MiRNAs/LncRNAs regulate MDSCs within TME, becoming one of potential breakthrough points at the investigation and treatment of cancer. Therefore, we summarize how miRNAs/lncRNAs mediate the differentiation, expansion and immunosuppressive function of tumor MDSCs in TME. We will then focus on the regulatory mechanisms of exosomal MicroRNAs/LncRNAs on tumor MDSCs. Finally, we will discuss how the interaction of miRNAs/lncRNAs modulates tumor MDSCs.
Collapse
Affiliation(s)
- Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Shang Zhao
- Department of Pathophysiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Hui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- *Correspondence: Yanping Su, ; Peng Qu,
| | - Peng Qu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Yanping Su, ; Peng Qu,
| |
Collapse
|
6
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
7
|
Lin CY, Wu RC, Yang LY, Jung SM, Ueng SH, Tang YH, Huang HJ, Tung HJ, Lin CT, Chen HY, Chao A, Lai CH. MicroRNAs as Predictors of Future Uterine Malignancy in Endometrial Hyperplasia without Atypia. J Pers Med 2022; 12:311. [PMID: 35207799 PMCID: PMC8879120 DOI: 10.3390/jpm12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
The histological criteria for classifying endometrial hyperplasia (EH) are based on architectural crowding and nuclear atypia; however, diagnostic agreement among pathologists is poor. We investigated molecular biomarkers of endometrial cancer (EC) risk in women with simple hyperplasia or complex hyperplasia without atypia (SH/CH-nonA). Forty-nine patients with EC preceded by SH/CH-nonA were identified, of which 23 were excluded (15 with complex atypical hyperplasia (CAH), six not consenting, one with a diagnosis <6 months prior, and one lost to follow-up). The EH tissues of these patients were compared with those of patients with SH/CH-nonA that did not progress to EC (control) through microRNA (miRNA) array analysis, and the results were verified in an expanded cohort through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). MiRNA arrays analyses revealed 20 miRNAs that differed significantly (p < 0.05, fold change >4) between the control (n = 12) and case (n = 6) patients. Multiplex RT-qPCR for the 20 miRNAs in the expanded cohort (94 control and 25 case patients) led to the validation of miR-30a-3p (p = 0.0009), miR-141 (p < 0.0001), miR-200a (p < 0.0001), and miR-200b (p < 0.0001) as relevant biomarkers, among which miR-141, miR-200a, and miR-200b regulate the expression of phosphatase and tensin homolog (PTEN). For the prediction of EC, the area under the curve for miR-30a-3p, miR-141, miR-200a, and miR-200b was 0.623, 0.754, 0.783, and 0.704, respectively. The percentage of complete PTEN loss was significantly higher in the case group than in the control group (24% vs. 0%, p < 0.001, Fisher's exact test). A combination of complete PTEN loss and miR-200a provided optimal prediction performance (sensitivity = 0.760; specificity = 1.000; positive predictive value = 1.000; negative predictive value = 0.937; accuracy = 0.947). MiR-30a-3p, miR-141, miR-200a, miR-200b, and complete PTEN loss may be useful tissue biomarkers for predicting EC risk among patients with SH/CH-nonA.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Lan-Yan Yang
- Biostatics Unit, Clinical Trial Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan;
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Jung
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Shir-Hwa Ueng
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Hsiu-Jung Tung
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Cheng-Tao Lin
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Hsuan-Yu Chen
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Angel Chao
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| |
Collapse
|
8
|
Regulation of Immune Cells by microRNAs and microRNA-Based Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:75-108. [DOI: 10.1007/978-3-031-08356-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Role of FUS-CHOP in Myxoid Liposarcoma via miR-486/CDK4 Axis. Biochem Genet 2021; 60:1095-1106. [PMID: 34792704 DOI: 10.1007/s10528-021-10151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to explore the roles and relationship between FUsed in Sarcoma (FUS)-C/EBP HOmologous Protein (CHOP), microRNA (miR)-486 and cyclin dependent kinase 4 (CDK4) in myxoid liposarcoma, and determined whether FUS-CHOP can regulate proliferation and apoptosis of myxoid liposarcoma cells by regulating miR-486/CDK4 axis. The levels of miR-486, CDK4 and FUS-CHOP in myxoid liposarcoma samples/adjacent normal muscle tissues and myxoid liposarcoma/human adipose-derived stem cell line were evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation and apoptosis were performed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and flow cytometry, respectively. Furthermore, the apoptosis-related proteins were determined using Western blot assay. We found that miR-486 was down-regulated, FUS-CHOP and CDK4 were up-regulated in myxoid liposarcoma tissues and myxoid liposarcoma cell lines. Moreover, FUS-CHOP-siRNA distinctly suppressed FUS-CHOP level and increased miR-486 levels in 1955/91 cells. Our results demonstrated that knockdown of FUS-CHOP by siRNA inhibited 1955/91 growth, promoted cell apoptosis and enhanced cleaved Caspase3 protein expression. However, all these data were reversed by miR-486 inhibitor. Similarly, compared to mimic control, miR-486 mimic markedly reduced 1955/91 cells growth, induced cell apoptosis and fortified cleaved Caspase3 level, while these results were abolished by CDK4-plasmid. Collectively, our observations clearly suggested that FUS-CHOP regulated myxoid liposarcoma cell proliferation and apoptosis by the regulation of miR-486/CDK4 axis, indicating the potential use of FUS-CHOP-siRNA as a promising therapy for myxoid liposarcoma.
Collapse
|
10
|
Abnormal Expression of microRNA-296-3p in Type 2 Diabetes Patients and its Role in Pancreatic β-Cells Function by Targeting Tensin Homolog Deleted on Chromosome Ten. Biochem Genet 2021; 60:39-53. [PMID: 34085179 DOI: 10.1007/s10528-021-10083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Diabetes mellitus (DM), a familiar disease, is characterized by high blood glucose levels owing to insulin deficiency. Researches have suggested that the incidence rate of diabetes is increasing and it has become an important global epidemic. The type 2 diabetes mellitus (T2DM) is featured with pancreatic β-cell loss and lack of insulin release. Nevertheless, the therapeutic methods that was helpful to improve pancreatic β-cell damage still unclear. Previous report have revealed that tensin homolog deleted on chromosome ten (PTEN) was remarkably enhanced in serum of patients with T2DM, and the lack of PTEN may prevent function deficiency of pancreatic β-cells in DM. However, the underlying mechanisms are rarely illustrated. Our purpose in this report was to illustrated the roles and potential mechanism of microRNA-296-3p (miR-296-3p) in uric acid (UA)-induced pancreatic β-cell injury. The direct target of miR-296-3p was predicted and verified by dual-luciferase reporter system and TargetScan assay. Moreover, Min6 cells were induced by 5 mg/dl UA and the cell proliferation, apoptosis, and insulin release were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and glucose-stimulated insulin secretion (GSIS), respectively. Quantitative reverse transcription PCR (qRT-PCR) and western blot assay were adopted to analyze the levels of miR-296-3p, PTEN and apoptosis-related proteins. TargetScan and Dual-luciferase reporter system confirmed that PTEN directly target miR-296-3p. MiR-296-3p was downregulated in UA-induced Min6 cells and the serum of type 2 diabetes patients, while PTEN was upregulated in UA-induced Min6 cells. Upregulation of miR-296-3p by mimic dramatically promoted miR-296-3p level and decreased PTEN level. Besides, PTEN was over-expressed after PTEN-plasmid transfection. UA treatment prominently decreased cell viability, promoted apoptotic cells, enhanced Bax levels, declined Bcl-2 level as well as decreased insulin release in Min6 cells. MiR-296-3p mimic significantly alleviated UA-induced pancreatic β-cells dysfunction, and PTEN-plasmid eliminated the protective effect of miR-296-3p on insulin release, cell viability, and apoptosis of pancreatic β-cells in UA-stimulated Min6 cells. In summary, our findings revealed that upregulation of miR-296-3p protected pancreatic β-cells functions against UA-induced dysfunction by targeting PTEN, which provides a novel agent for type 2 diabetes treatment.
Collapse
|
11
|
Xing Y, Ruan G, Ni H, Qin H, Chen S, Gu X, Shang J, Zhou Y, Tao X, Zheng L. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front Immunol 2021; 12:624725. [PMID: 34084160 PMCID: PMC8167795 DOI: 10.3389/fimmu.2021.624725] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haiwei Ni
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiamin Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yantong Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xi Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Li Q, Li H, Liang J, Mei J, Cao Z, Zhang L, Luo J, Tang Y, Huang R, Xia H, Zhang Q, Xiang Q, Yang Y, Huang Y. Sertoli cell-derived exosomal MicroRNA-486-5p regulates differentiation of spermatogonial stem cell through PTEN in mice. J Cell Mol Med 2021; 25:3950-3962. [PMID: 33608983 PMCID: PMC8051706 DOI: 10.1111/jcmm.16347] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Self‐renewal and differentiation of spermatogonial stem cell (SSC) are critical for male fertility and reproduction, both of which are highly regulated by testicular microenvironment. Exosomal miRNAs have emerged as new components in intercellular communication. However, their roles in the differentiation of SSC remain unclear. Here, we observed miR‐486‐5p enriched in Sertoli cell and Sertoli cell‐derived exosomes. The exosomes mediate the transfer of miR‐486‐5p from Sertoli cells to SSCs. Exosomes release miR‐486‐5p, thus up‐regulate expression of Stra8 (stimulated by retinoic acid 8) and promote differentiation of SSC. And PTEN was identified as a target of miR‐486‐5p. Overexpression of miR‐486‐5p in SSCs down‐regulates PTEN expression, which up‐regulates the expression of STRA8 and SYCP3, promotes SSCs differentiation. In addition, blocking the exosome‐mediated transfer of miR‐486‐5p inhibits differentiation of SSC. Our findings demonstrate that miR‐486‐5p acts as a communication molecule between Sertoli cells and SSCs in modulating differentiation of SSCs. This provides a new insight on molecular mechanisms that regulates SSC differentiation and a basis for the diagnosis, treatment, and prevention of male infertility.
Collapse
Affiliation(s)
- Quan Li
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Hanhao Li
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Jinlian Liang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Jiaxin Mei
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Zhen Cao
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Jiao Luo
- Institute for Translational Medicine, Shenzhen Second People's Hospital / The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Tang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Rufei Huang
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Huan Xia
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Qihao Zhang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Qi Xiang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical Research & Development Center of Jinan University, Guangzhou, China
| | - Yan Yang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Yadong Huang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Department of Pharmacology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
13
|
Shabgah AG, Salmaninejad A, Thangavelu L, Alexander M, Yumashev AV, Goleij P, Hedayati-Moghadam M, Mohammadi H, Ahmadi M, Navashenaq JG. The role of non-coding genome in the behavior of infiltrated myeloid-derived suppressor cells in tumor microenvironment; a perspective and state-of-the-art in cancer targeted therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 161:17-26. [PMID: 33259833 DOI: 10.1016/j.pbiomolbio.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Cancer is one of the healthcare problems that affect many communities around the world. Many factors contribute to cancer development. Besides, these factors are counted as the main impediment in cancer immunotherapy. Myeloid-derived suppressor cells (MDSCs) are one of these impediments. MDSCs inhibit the immune responses through various mechanisms such as inhibitory cytokine release and nitric oxide metabolite production. Several factors are involved in forming these cells, including tumor secreted cytokine and chemokines, transcription factors, and non-coding RNA. In the meantime, micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the vital gene regulatory elements that affect gene expression. In this study, we are going to discuss the role of miRNAs and lncRNAs in MDSCs development in a cancer situation. It is hoped that miRNA and lncRNAs targeting may prevent the growth and development of these inhibitory cells in the cancer environment.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of Medicine, Bam University of Medical Sciences, Bam, Iran; Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Pouya Goleij
- Sana Institute of Higher Education, Faculty of Biology, Department of Genetics, Sari, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid Gholizadeh Navashenaq
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
14
|
circ_001653 Silencing Promotes the Proliferation and ECM Synthesis of NPCs in IDD by Downregulating miR-486-3p-Mediated CEMIP. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:385-399. [PMID: 32203911 PMCID: PMC7201133 DOI: 10.1016/j.omtn.2020.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/03/2020] [Accepted: 01/18/2020] [Indexed: 02/08/2023]
Abstract
Functional changes of nucleus pulposus cells (NPCs) are considered to be the initiating factors of intervertebral disc degeneration (IDD). In this study, we investigated whether circular RNA homo sapiens (hsa)_circ_001653 (circ_001653) could bind to microRNA-486-3p (miR-486-3p) to regulate the biological properties of NPCs and the synthesis of extracellular matrix (ECM) in IDD. Initially, circ_001653 was highly expressed in isolated NPCs and degenerative NP tissues in close relation to the severity of IDD. To evaluate the effects of circ_001653 on cellular processes, we performed experiments in vitro and in vivo with altered expression of circ_001653 and miR-486-3p. An increased expression of circ_001653 in the NPCs and the degenerative NP tissues was directly associated with elevated apoptosis and an imbalance between anabolic and catabolic factors of the ECM. miR-486-3p regulated NPC proliferation and inhibited the expression of CEMIP, the cell migration-inducing hyaluronan binding protein. circ_001653 regulated miR-486-3p expression, functioning in NPCs to upregulate CEMIP, whereas circ_001653 silencing alleviated IDD in the mouse model. Altogether, circ_001653 downregulation could potentially alleviate NPC apoptosis and the metabolic imbalance of the ECM through the miR-486-3p/CEMIP axis. These mechanistic insights may present new therapeutic targets for the treatment of IDD.
Collapse
|
15
|
Han X, Shi H, Sun Y, Shang C, Luan T, Wang D, Ba X, Zeng X. CXCR2 expression on granulocyte and macrophage progenitors under tumor conditions contributes to mo-MDSC generation via SAP18/ERK/STAT3. Cell Death Dis 2019; 10:598. [PMID: 31395859 PMCID: PMC6687752 DOI: 10.1038/s41419-019-1837-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise a critical component of the tumor environment and CXCR2 reportedly plays a key role in the pathophysiology of various inflammatory diseases. Here, CXCR2 expression on granulocyte and macrophage progenitor cells (GMPs) was found to participate in myeloid cell differentiation within the tumor environment. In CXCR2-deficient tumor-bearing mice, GMPs exhibited fewer macrophage and dendritic cell progenitor cells than wild-type tumor-bearing mice, thereby decreasing monocytic MDSCs (mo-MDSCs) expansion. CXCR2 deficiency increased SAP18 expression in tumor-bearing mice, which reduced STAT3 phosphorylation through restraining ERK1/2 activation. Our findings reveal a critical role for CXCR2 in regulating hematopoietic progenitor cell differentiation under tumor conditions, and SAP18 is a key negative regulator in this process. Thus, inhibiting CXCR2 expression may alter the tumor microenvironment and attenuate tumor progression.
Collapse
Affiliation(s)
- Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | | | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Tao Luan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China.
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Pan L, Tang Z, Pan L, Tang R. MicroRNA-3666 inhibits lung cancer cell proliferation, migration, and invasiveness by targeting BPTF. Biochem Cell Biol 2019; 97:415-422. [PMID: 30481052 DOI: 10.1139/bcb-2018-0301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A previous study by our group indicted that overexpression of bromodomain PHD-finger transcription factor (BPTF) occurs in lung adenocarcinoma, and is closely associated with advanced clinical stage, higher numbers of metastatic lymph nodes, the occurrence of distant metastasis, low histological grade, and poor prognosis. Down-regulation of BPTF inhibited lung adenocarcinoma cell proliferation and promoted lung adenocarcinoma cell apoptosis. The purpose of this study is to identify valuable microRNAs (miRNAs) that target BPTF to modulate lung adenocarcinoma cell proliferation. In our results, we found that miR-3666 was notably reduced in lung adenocarcinoma tissues and cell lines. Using an miR-3666 mimic, we discovered that cell proliferation, migration, and invasiveness were suppressed by miR-3666 overexpression, but these were all enhanced when the expression of miR-3666 was reduced. Moreover, bioinformatics analysis using the TargetScan database and miRanda software suggested a putative target site in BPTF 3′-UTR. Furthermore, using a luciferase reporter assay, we verified that miR-3666 directly targets the 3′-UTR of BPTF. Using Western blot we discovered that overexpression of miR-3666 negatively regulates the protein expression of BPTF. Finally, we identified that the PI3K–AKT and epilthelial–mesenchymal transition (EMT) signaling pathways were inhibited by miR-3666 overexpression in lung cancer cells. In conclusion, our data indicate that miR-3666 could play an essential role in cell proliferation, migration, and invasiveness by targeting BPTF and partly inhibiting the PI3K–AKT and EMT signaling pathways in human lung cancers.
Collapse
Affiliation(s)
- Linqing Pan
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Reproductive Medical Center, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| | - Zhipeng Tang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lina Pan
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ranran Tang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
17
|
Liu F, Zhang G, Lv S, Wen X, Liu P. miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. J Cell Biochem 2019; 120:12618-12627. [PMID: 30834603 DOI: 10.1002/jcb.28528] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 01/02/2023]
Abstract
High-grade ovarian serous carcinoma (HGS-OvCa), a type of ovarian cancer with poor prognosis due to distant metastasis, is urgently in need of new therapeutic targets. microRNAs (miRNAs), a class of small noncoding RNAs, perform significant roles in tumor progression. Mounting evidence has revealed the aberrant expression of miRNA in various cancers, one of which is HGS-OvCa. Present study planned to investigate that miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. Upregulation of miR-301b-3p was uncovered in HGS-OvCa tissues and cell lines, and was identified to be associated with metastasis. The Kaplan-Meier analysis confirmed the association of miR-301b-3p with poor prognosis of HGS-OvCa patients. Transwell assay validated the oncogenic effect of miR-301b-3p on migration and invasion of HGS-OvCa cells. Cytoplasmic polyadenylation element binding protein 3 (CPEB3) was then identified as a target of miR-301b-3p. It was also discovered that CPEB3 was downregulated in HGS-OvCa tissues and cell lines. The Spearman correlation curve presented the negative correlation of CPEB3 expression with miR-301b-3p. Furthermore, rescue assays proved that miRNA-301b-3p regulated the invasion and migration through CPEB3. Western blot and qRT-PCR analysis showed that miRNA-301b-3p induced epidermal growth factor receptor and downstream metastasis-related proteins, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2), through CPEB3. To be concluded, these results indicated that miRNA-301b-3p accelerated migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis.
Collapse
Affiliation(s)
- Fengying Liu
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Guilian Zhang
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Shiming Lv
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Xinmian Wen
- Department of Laboratory Medicine, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Peishu Liu
- Department of Gynecology and obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Jiang J, Gao Q, Gong Y, Huang L, Lin H, Zhou X, Liang X, Guo W. MiR-486 promotes proliferation and suppresses apoptosis in myeloid cells by targeting Cebpa in vitro. Cancer Med 2018; 7:4627-4638. [PMID: 30073773 PMCID: PMC6143942 DOI: 10.1002/cam4.1694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
The monocytic MDSC (M‐MDSC) is one of the major types of MDSCs, which play important roles in suppression of antitumor immunity. However, the mechanisms underlying how M‐MDSCs so heavily accumulate in patients with cancer are still poorly understood. The purpose of this study was to identify miRNAs that regulate the proliferation and differentiation of M‐MDSCs. Microarray analysis was performed to identify differentially expressed miRNAs between tumor‐induced M‐MDSCs (TM‐MDSCs) and their counterparts from tumor‐free mice. The miRNAs and their target genes that regulate the proliferation and differentiation of myeloid cells were predicted by bioinformatics analysis and validated by RT‐qPCR. Luciferase reporter assays were used to analyze the relationships between miRNAs and target genes. Overexpression of candidate miRNAs and target genes in myeloid cells was conducted to verify their functions in cell proliferation, differentiation, and apoptosis. Our data showed that miR‐486 was overexpressed in TM‐MDSCs. Cebpa was predicted to be one of the target genes of miR‐486 that regulates the proliferation of myeloid cells. Expression of Cebpa was inversely correlated with miR‐486 in TM‐MDSCs, and we found that overexpression of miR‐486 suppressed the expression of Cebpa in both 293T cells determined by luciferase reporter assays and in myeloid cells determined by RT‐qPCR. Overexpression of miR‐486 promoted proliferation and suppressed apoptosis in myeloid cells, as opposed to overexpression of Cebpa, which promoted the opposing phenotype. Overexpression of either miR‐486 or Cebpa inhibited differentiation of myeloid cells. This study indicates that miR‐486 promotes proliferation and suppresses apoptosis in myeloid cells by targeting Cebpa in vitro, suggesting that miR‐486 and Cebpa might be involved in the expansion of TM‐MDSCs in tumor‐bearing mice.
Collapse
Affiliation(s)
- Jingwei Jiang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Qingmin Gao
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yiwei Gong
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Lizhen Huang
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina
| | - Hao Lin
- Department of OncologyHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xinli Zhou
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaohua Liang
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Weijian Guo
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|