1
|
Zheng S, He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X. Understanding PI3K/Akt/mTOR signaling in squamous cell carcinoma: mutated PIK3CA as an example. MOLECULAR BIOMEDICINE 2024; 5:13. [PMID: 38616230 PMCID: PMC11016524 DOI: 10.1186/s43556-024-00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 04/16/2024] Open
Abstract
Compared with those in adenocarcinoma, PIK3CA mutations are more common in squamous cell carcinoma (SCC), which arises from stratified squamous epithelia that are usually exposed to adverse environmental factors. Although hotspot mutations in exons 9 and 20 of PIK3CA, including E542K, E545K, H1047L and H1047R, are frequently encountered in the clinic, their clinicopathological meaning remains to be determined in the context of SCC. Considering that few reviews on PIK3CA mutations in SCC are available in the literature, we undertook this review to shed light on the clinical significance of PIK3CA mutations, mainly regarding the implications and ramifications of PIK3CA mutations in malignant cell behavior, prognosis, relapse or recurrence and chemo- or radioresistance of SCC. It should be noted that only those studies regarding SCC in which PIK3CA was mutated were cherry-picked, which fell within the scope of this review. However, the role of mutated PIK3CA in adenocarcinoma has not been discussed. In addition, mutations occurring in other main members of the PI3K-AKT-mTOR signaling pathway other than PIK3CA were also excluded.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Yan Liang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
3
|
Han L, Chen S, Du SY. Role of inositol polyphosphate-4-phosphatase type II in oncogenesis of digestive system tumors. World J Gastrointest Oncol 2023; 15:1706-1716. [PMID: 37969410 PMCID: PMC10631434 DOI: 10.4251/wjgo.v15.i10.1706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Inositol polyphosphate-4-phosphatase type II (INPP4B) is a newly discovered PI(3,4,5)P3 phosphatase. Many studies have revealed that INPP4B is upregulated or downregulated in tumors of the digestive system, and the abnormal expression of INPP4B may be attributed to the occurrence, development, and prognosis of tumors of the digestive system. This paper reviews studies on the correlations between INPP4B and digestive system tumors and the roles of INPP4B in the development of different tumors to provide a theoretical basis for further research on its molecular mechanism and clinical application. "INPP4B" and "tumor" were searched as key words in PubMed and in the CNKI series full text database retrieval system from January 2000 to August 2023. A total of 153 English-language studies and 30 Chinese-language studies were retrieved. The following enrollment criteria were applied: (1) Studies contained information on the biological structure and functions of INPP4B; (2) studies covered the influence of abnormal expression of INPP4B in digestive system tumors; and (3) studies covered the role of INPP4B in the diagnosis, treatment, and prognosis of digestive system tumors. After excluding the literature irrelevant to this study, 61 papers were finally included in the analysis. INPP4B expression is low in gastric cancer, colon cancer, pancreatic cancer, and liver cancer but it has high expression in esophageal cancer, colon cancer, pancreatic cancer, and gallbladder cancer. INPP4B is involved in the occurrence and development of digestive system tumors through the regulation of gene expression and signal transduction. The abnormal expression of INPP4B plays an important role in the development of digestive system tumors. Studies on INPP4B provide new molecular insights for the diagnosis, treatment, and prognosis evaluation of digestive system tumors.
Collapse
Affiliation(s)
- Le Han
- Peking University China-Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, China
| | - Shuo Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shi-Yu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
4
|
Pustylnyak VO, Alekseenok EY, Perevalova AM, Kozlov VV, Gulyaeva LF. Tumor suppressor PTEN regulation by tobacco smoke in lung squamous-cell carcinoma based on bioinformatics analysis. Heliyon 2023; 9:e19044. [PMID: 37609416 PMCID: PMC10440530 DOI: 10.1016/j.heliyon.2023.e19044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is a tumor suppressor inactivated in a variety of human cancers. PTEN alteration correlates with lung squamous-cell carcinoma (LUSC) histology. However, it is still unclear how tobacco smoke regulates PTEN in LUSC tissues. In this study, we used free online databases and online tools to analyze PTEN expression and the role of smoking on PTEN alteration in patients with LUSC. We validated bioinformatics data by performing RT-PCR analysis using LUSC patient samples. Our results showed a correlation between the downregulation of PTEN in LUSC tissues compared to normal tissues and smoking exposure. In silico results using online platforms suggest that hsa-mir-301a down-regulates PTEN expression level in smoking patients with LUSC. RT-PCR analysis demonstrated that the PTEN expression was significantly decreased, whereas expression of hsa-mir-301a was up-regulated in the smoker cohort of LUSC tissue compared to adjacent non-cancerous tissues. A significant negative correlation between PTEN and hsa-mir-301a levels was observed in tumour tissues in our cohort of LUSC patients. Our results suggest that the downregulation PTEN gene caused by tobacco smoke-mediated increase of hsa-mir-301a may play an important role in LUSC tumorigenesis.
Collapse
Affiliation(s)
- Vladimir O. Pustylnyak
- Novosibirsk State University, 630090, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| | - Efim Y. Alekseenok
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| | | | - Vadim V. Kozlov
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
- Novosibirsk Regional Oncology Center, 630108, Novosibirsk, Russia
| | - Lyudmila F. Gulyaeva
- Novosibirsk State University, 630090, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| |
Collapse
|
5
|
Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021; 268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
The tripartite motif (TRIM) family is defined by the presence of a Really Interesting New Gene (RING) domain, one or two B-box motifs and a coiled-coil region. TRIM proteins play key roles in many biological processes, including innate immunity, tumorigenesis, cell differentiation and ontogenetic development. Alterations in TRIM gene and protein levels frequently emerge in a wide range of tumors and affect tumor progression. As canonical E3 ubiquitin ligases, TRIM proteins participate in ubiquitin-dependent proteolysis of prominent components of the p53, NF-κB and PI3K/AKT signaling pathways. The occurrence of ubiquitylation events induced by TRIM proteins sustains internal balance between tumor suppressive and tumor promoting genes. In this review, we summarized the diverse mechanism of TRIM proteins responsible for the most common malignancy, lung cancer. Furthermore, we also discussed recent progress in both the diagnosis and therapeutics of tumors contributed by TRIM proteins.
Collapse
Affiliation(s)
- Weihua Zhan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Han Y, Wang X. The emerging roles of KPNA2 in cancer. Life Sci 2019; 241:117140. [PMID: 31812670 DOI: 10.1016/j.lfs.2019.117140] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Karyopherin α2 (KPNA2, also known as importinα-1), a member of the nuclear transporter family, is involved in the nucleocytoplasmic transport pathway of a variety of tumor-associated proteins. Recent studies have found that KPNA2 is overexpressed in various cancers, which is associated with poor prognosis. In addition, it has been shown to promote tumor formation and progression by participating in cell differentiation, proliferation, apoptosis, immune response, and viral infection. It is indicated that KPNA2 also plays an important role in the diagnosis, treatment and prognosis of tumors. Herein, we provide an overview of the function and mechanism of KPNA2 in cancer and the prospects in the diagnosis and treatment of cancer. In the future, KPNA2 provides new ideas for the early diagnosis of malignant tumors, the development of molecularly targeted drugs, and prognosis evaluation.
Collapse
Affiliation(s)
- Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021, China; Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong 250021, China.
| |
Collapse
|
7
|
Ma X, Liang AL, Liu YJ. Research progress on the relationship between lung cancer drug-resistance and microRNAs. J Cancer 2019; 10:6865-6875. [PMID: 31839821 PMCID: PMC6909942 DOI: 10.7150/jca.31952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, a malignant tumor with the highest death rate of cancer, seriously endangers human health. And its pathogenesis and mechanism of drug resistance has been partially clarified, especially for the signal pathway of epidermal growth factor receptor (EGFR). The targeting therapy of EGFR signaling pathway in non-small cell lung cancer (NSCLC) has achieved a certain effect, but the two mutation of EGFR and other mechanisms of lung cancer resistance still greatly reduce the therapeutic effect of chemotherapy on it. MicroRNA is an endogenous non coding RNA, which has a regulatory function after transcriptional level. Recent studies on the mechanism of lung cancer resistance have found that a variety of microRNAs are related to the mechanism of lung cancer drug-resistance. They can regulate lung cancer resistance by participating in signal pathways, drug resistance genes and cell apoptosis, thus affecting the sensitivity of cancer cells to drugs. Therefore, microRNAs can be used as a specific target for the treatment of lung cancer and plays a vital role in the early diagnosis, prognosis and treatment of lung cancer. This article reviews the mechanisms of lung cancer resistance and its relationship with microRNAs.
Collapse
Affiliation(s)
| | | | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong & Departments of Biochemistry and Molecular Biology & Departments of Clinical Biochemistry, Guangdong Medical University, 523808, Dongguan, Guangdong, P.R. China
| |
Collapse
|
8
|
Gkountakos A, Sartori G, Falcone I, Piro G, Ciuffreda L, Carbone C, Tortora G, Scarpa A, Bria E, Milella M, Rosell R, Corbo V, Pilotto S. PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers (Basel) 2019; 11:cancers11081141. [PMID: 31404976 PMCID: PMC6721522 DOI: 10.3390/cancers11081141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Giulia Sartori
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Michele Milella
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Rafael Rosell
- Germans Trias i Pujol, Health Sciences Institute and Hospital, Campus Can Ruti, 08916 Badalona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy.
| | - Sara Pilotto
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
9
|
Wang Y, Li X, Liu X, Chen Y, Yang C, Tan C, Wang B, Sun Y, Zhang X, Gao Y, Ding J, Meng L. Simultaneous inhibition of PI3Kα and CDK4/6 synergistically suppresses KRAS-mutated non-small cell lung cancer. Cancer Biol Med 2019; 16:66-83. [PMID: 31119047 PMCID: PMC6528459 DOI: 10.20892/j.issn.2095-3941.2018.0361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Activating KRAS mutations are the most common drivers in the development of non-small cell lung cancer (NSCLC). However, unsuccess of treatment by direct inhibition of KRAS has been proven. Deregulation of PI3K signaling plays an important role in tumorigenesis and drug resistance in NSCLC. The activity of PI3Kα-selective inhibition against KRAS-mutated NSCLC remains largely unknown.
Methods Cell proliferation was detected by sulforhodamine B assay. Cell cycle distribution and apoptosis were measured by flow cytometry. Cell signaling was assessed by Western blot and immunohistochemistry. RNA interference was used to down-regulate the expression of cyclin D1. Human NSCLC xenografts were employed to detect therapeutic efficacy in vivo.
Results CYH33 possessed variable activity against a panel of KRAS-mutated NSCLC cell lines. Although CYH33 blocked AKT phosphorylation in all tested cells, Rb phosphorylation decreased in CYH33-sensitive, but not in CYH33-resistant cells, which was consistent with G1 phase arrest in sensitive cells. Combined treatment with the CDK4/6 inhibitor, PD0332991, and CYH33 displayed synergistic activity against the proliferation of both CYH33-sensitive and CYH33-resistant cells, which was accompanied by enhanced G1-phase arrest. Moreover, down-regulation of cyclin D1 sensitized NSCLC cells to CYH33. Reciprocally, CYH33 abrogated the PD0332991-induced up-regulation of cyclin D1 and phosphorylation of AKT in A549 cells. Co-treatment with these two drugs demonstrated synergistic activity against A549 and H23 xenografts, with enhanced inhibition of Rb phosphorylation. Conclusions Simultaneous inhibition of PI3Kα and CDK4/6 displayed synergistic activity against KRAS-mutated NSCLC. These data provide a mechanistic rationale for the combination of a PI3Kα inhibitor and a CDK4/6 inhibitor for the treatment of KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Yuxiang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Li
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xueling Liu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunhao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200120, China
| | - Cun Tan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200120, China
| | - Bobo Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Sun
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Zhang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinglei Gao
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Shan X, Zhang H, Zhang L, Zhou X, Wang T, Zhang J, Shu Y, Zhu W, Wen W, Liu P. Identification of four plasma microRNAs as potential biomarkers in the diagnosis of male lung squamous cell carcinoma patients in China. Cancer Med 2018; 7:2370-2381. [PMID: 29673101 PMCID: PMC6010830 DOI: 10.1002/cam4.1490] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulated microRNAs (miRNAs) in the plasma of patients with lung squamous cell carcinoma (LSCC) might serve as biomarkers for LSCC diagnosis. The expression of miRNAs was performed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) on the basis of Exiqon panels in the initial screening phase including three male LSCC pool samples and one normal control (NC) pool sample (per 10 samples were pooled as one pool sample). After the training (32 LSCC vs. 31 NCs), the testing (55 LSCC vs. 55 NCs), and the external validation (15 LSCC vs. 15 NCs) stages via qRT-PCR, a four-miRNA signature (miR-181a-5p, miR-21-5p, miR-106a-5p, and miR-93-5p) was identified for LSCC detection. Areas under the receiver operating characteristic (ROC) curve (AUC) of the four-miRNA panel for the training, the testing, and the external validation phases were 0.795, 0.827, and 0.914, respectively. Then, the four miRNAs were explored in LSCC tissue samples (23 LSCC vs. 23 NCs), and their expression was significantly up-regulated. However, none of the four miRNAs found significantly up-regulated in plasma exosomes expect miR-93-5p with borderline significance (16 LSCC vs. 16 NCs). In summary, our study established a four-miRNA peripheral plasma signature, which contributed to diagnosing male LSCC patients in China to a certain degree.
Collapse
Affiliation(s)
- Xia Shan
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
- Department of RespirationThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjing210000China
| | - Huo Zhang
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Lan Zhang
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
- Department of Radiation OncologySuzhou Municipal HospitalSuzhou Cancer CenterThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouJiangsu215001China
| | - Xin Zhou
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Tongshan Wang
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - JinYing Zhang
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Yongqian Shu
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Wei Zhu
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
- Department of OncologyThe Affiliated Jiangsu Shengze Hospital of Nanjing Medical UniversityNo.1399 West RoadWujiang DistrictSuzhou 215000China
| | - Wei Wen
- Department of Thoracic SurgeryFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing 210029China
| | - Ping Liu
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjing210029China
| |
Collapse
|
11
|
Inamura K, Yokouchi Y, Kobayashi M, Ninomiya H, Sakakibara R, Subat S, Nagano H, Nomura K, Okumura S, Shibutani T, Ishikawa Y. Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes. Oncotarget 2018; 8:28725-28735. [PMID: 28404926 PMCID: PMC5438686 DOI: 10.18632/oncotarget.15647] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/27/2017] [Indexed: 01/04/2023] Open
Abstract
TROP2 is a transmembrane glycoprotein that is overexpressed in various cancers. Emerging evidence suggests that TROP2-targeting therapies are efficacious and safe in patients with multiple prior treatments. TROP2 is a promising target for lung cancer treatment; however, little is known regarding the association of TROP2 expression with clinicopathological/molecular features, including prognosis, in lung cancer. We examined consecutive cases of adenocarcinoma, squamous cell carcinoma (SqCC), and high-grade neuroendocrine tumor (HGNET) for the membranous expression of TROP2 using immunohistochemistry. High TROP2 expression was observed in 64% (172/270) of adenocarcinomas, 75% (150/201) of SqCCs, and 18% (21/115) of HGNETs. Intriguingly, the association of TROP2 expression with mortality was dependent on the lung cancer subtype. High TROP2 expression was associated with higher lung cancer-specific mortality in adenocarcinomas [univariable hazard ratio (HR) = 1.60, 95% confidence interval (CI) = 1.07–2.44, P = 0.022)], but not in SqCCs (univariable HR = 0.79, 95% CI = 0.35–1.94, P = 0.79). In HGNETs, high TROP2 expression was associated with lower lung cancer-specific mortality in both univariable and multivariable analyses (multivariable HR = 0.13, 95% CI = 0.020–0.44, P = 0.0003). Our results suggest a differential role for TROP2 in different lung cancer subtypes.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yusuke Yokouchi
- Translational Medicine & Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-0005, Japan
| | - Maki Kobayashi
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Rie Sakakibara
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Integrated Pulmonology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Sophia Subat
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroko Nagano
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Kimie Nomura
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Sakae Okumura
- Thoracic Oncology Center, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Tomoko Shibutani
- Translational Medicine & Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-0005, Japan
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
12
|
Wang CI, Chen YY, Wang CL, Yu JS, Chang YS, Yu CJ. mTOR regulates proteasomal degradation and Dp1/E2F1- mediated transcription of KPNA2 in lung cancer cells. Oncotarget 2018; 7:25432-42. [PMID: 27009856 PMCID: PMC5041915 DOI: 10.18632/oncotarget.8170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
Karyopherin subunit alpha-2 (KPNA2) is overexpressed in various human cancers and is associated with cancer invasiveness and poor prognosis in patient. Nevertheless, the regulation of KPNA2 expression in cancers remains unclear. We herein applied epidermal growth factor (EGF) and five EGF receptor (EGFR)-related kinase inhibitors to investigate the role of EGFR signaling in KPNA2 expression in non-small cell lung cancer (NSCLC) cells. We found that EGFR signaling, particularly the mammalian target of rapamycin (mTOR) activity was positively correlated with KPNA2 protein levels in NSCLC cells. The mTOR inhibitors and mTOR knockdown reduced the protein and mRNA levels of KPNA2 in NSCLC and breast cancer cells. Specifically, rapamycin treatment induced proteasome-mediated KPNA2 protein decay and attenuated the transcriptional activation of KPNA2 by decreasing Dp1/E2F1 level in vivo. Immunoprecipitation assay further revealed that KPNA2 physically associated with the phospho-mTOR/mTOR and this association was abolished by rapamycin treatment. Collectively, our results show for the first time that KPNA2 is transcriptionally and post-translationally regulated by the mTOR pathway and provide new insights into targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Chun-I Wang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yan-Yu Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| |
Collapse
|
13
|
Alfieri R, Giovannetti E, Bonelli M, Cavazzoni A. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN)-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway. Front Oncol 2017; 7:170. [PMID: 28848709 PMCID: PMC5552661 DOI: 10.3389/fonc.2017.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.
Collapse
Affiliation(s)
- Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands.,Cancer Pharmacology Laboratory, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Xie BH, He X, Hua RX, Zhang B, Tan GS, Xiong SQ, Liu LS, Chen W, Yang JY, Wang XN, Li HP. Mir-765 promotes cell proliferation by downregulating INPP4B expression in human hepatocellular carcinoma. Cancer Biomark 2016; 16:405-13. [PMID: 27062697 DOI: 10.3233/cbm-160579] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) dysregulation is widely involved in cancer progression and contributed to sustained cell proliferation by directly targeting multiple targets. Therefore, better understanding the underlying mechanism of miRNA in carcinogenesis may improve diagnostic and therapeutic strategies for malignancy. In our study, we found that mir-765 is upregulated in both hepatocellular carcinoma (HCC) cell lines and tissues, compared to human normal liver cell line and adjacent non-cancerous tissues, respectively. Overexpression of mir-765 increased HCC cells proliferation and tumorigenicity, whereas inhibition of mir-765 reverses this effect. Furthermore, we demonstrated that INPP4B as a direct target of mir-765 and ectopic expression of mir-765 repressed INPP4B expression, resulting in upregulation of p-AKT, Cyclin D1, and downregulation of p-FOXO3a, p21 expression in HCC. Strikingly, we found that silencing the expression of INPP4B is the essential biological function of miR-765 during HCC cell proliferation. Collectively, our findings reveal that miR-765 is a potential onco-miR that participates in carcinogenesis of human HCC by suppressing INPP4B expression, and might represent a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Bin-Hui Xie
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Guangzhou, Guangdong, China
| | - Xiao He
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Guangzhou, Guangdong, China
| | - Rui-Xi Hua
- Department of Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guo-Sheng Tan
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Qiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Liang-Shuai Liu
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Yong Yang
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Nong Wang
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Guangzhou, Guangdong, China
| | - He-Ping Li
- Department of Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays an integral role in many cellular processes and is frequently altered in cancer, contributing to tumor growth and survival. Small molecule inhibitors have been developed that target the three major nodes of this pathway: PI3K, AKT, and mammalian target of rapamycin. However, because oncogenic PI3K pathway activation is achieved in diverse, potentially redundant ways, the clinical efficacy of these inhibitors as monotherapies has, so far, been limited, despite demonstrating promising preclinical activity. Moreover, pathway activation is associated with resistance to other therapies; thus, in combination, PI3K pathway inhibitors could restore therapeutic sensitivity to these agents. To maximize therapeutic benefit, drug combinations and schedules must be explored to identify those with the highest efficacy and lowest toxicity overlap. In addition, defining appropriate patient subpopulations, for both monotherapy and drug combinations, will be important. However, identifying predictive biomarkers remains a challenge.
Collapse
|
16
|
He Y, Zhang X, Wang L, Tian Z, Liu Q, Yao J, Liu Y, Li C, Min L, Shan B. Detection of cancer specific mutations in early-stage non-small cell lung cancer using cell-free DNA by targeted sequencing. Int J Oncol 2016; 49:2351-2358. [DOI: 10.3892/ijo.2016.3731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/05/2016] [Indexed: 11/06/2022] Open
|
17
|
Granata S, Dalla Gassa A, Carraro A, Brunelli M, Stallone G, Lupo A, Zaza G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int J Mol Sci 2016; 17:ijms17050735. [PMID: 27187382 PMCID: PMC4881557 DOI: 10.3390/ijms17050735] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | | | - Amedeo Carraro
- Liver Transplant Unit, Department of General Surgery and Odontoiatrics, University/Hospital of Verona, 37126 Verona, Italy.
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy.
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| |
Collapse
|
18
|
Abstract
Enzymes (PI3K and PTEN) controlling cellular levels of 3-phosphorylated phosphoinositides are known as important drivers or suppressors of tumorigenesis in various cancers. In this issue of Cancer Discovery, Kofuji and colleagues and Chew and colleagues identify the lipid phosphatase INPP4B as a context-specific tumor suppressor that controls phosphoinositide levels and AKT2 activation in PTEN-deficient cells.
Collapse
Affiliation(s)
- Thanh-Trang T Vo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California.
| |
Collapse
|
19
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
Tang Y, Liu B, Li J, Wu H, Yang J, Zhou X, Yi M, Li Q, Yu S, Yuan X. Genetic variants in PI3K/AKT pathway are associated with severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Cancer Med 2015; 5:24-32. [PMID: 26645682 PMCID: PMC4708901 DOI: 10.1002/cam4.564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
PI3K/AKT pathway plays important roles in inflammatory and fibrotic diseases while its connection to radiation pneumonitis (RP) is unclear. In this study, we explored the associations of genetic variants in PI3K/AKT pathway with RP in lung cancer patients with radiotherapy. Two hundred and sixty one lung cancer patients with radiotherapy were included in this prospective study (NCT02490319) and genotyped by MassArray and Sanger Sequence methods. By multivariate Cox hazard analysis and multiple testing, GA/GG genotype of AKT2: rs33933140 (HR = 0.272, 95% CI: 0.140–0.530, P = 1.3E–4, Pc = 9.1E–4), and the GT/GG genotype of PI3CA: rs9838117 (HR = 0.132, 95% CI: 0.042–0.416, P = 0.001, Pc = 0.006) were found to be strongly associated with a decreased occurrence of RP ≥ grade 3. And patients with the CT/TT genotype of AKT2: rs11880261 had a notably higher incidence of RP ≥ grade 3 (HR = 2.950, 95% CI: 1.380–6.305, P = 0.005, Pc = 0.025). We concluded that the genetic variants of PI3K/AKT pathway were significantly related to RP of grade ≥ 3 and may thus be predictors of severe RP before radiotherapy, if further validated in larger population.
Collapse
Affiliation(s)
- Yang Tang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jing Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huanlei Wu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ju Yang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics 2015; 16:1843-62. [DOI: 10.2217/pgs.15.122] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. In the last years, the identification of activating EGFR mutations, conferring increased sensitivity and disease response to tyrosine kinase inhibitors, has changed the prospect of NSCLC patients. The PTEN/PI3K/AKT pathway regulates multiple cellular functions, including cell growth, differentiation, proliferation, survival, motility, invasion and intracellular trafficking. Alterations in this pathway, mainly PTEN inactivation, have been associated with resistance to EGFR-tyrosine kinase inhibitor therapy and lower survival in NSCLC patients. In this review, we will briefly discuss the main PTEN/PI3K/AKT pathway alterations found in NSCLC, as well as the cell processes regulated by PTEN/PI3K/AKT leading to tumorigenesis.
Collapse
Affiliation(s)
- Cristina Pérez-Ramírez
- Pharmacogenetics Unit. UGC Provincial de Farmacia de Granada. Instituto de Investigación Biosanitaria de Granada. Complejo Hospitalario Universitario de Granada. Avda. Fuerzas Armadas, 2. 18014 Granada, Spain
- Department of Biochemistry. Faculty of Pharmacy. University of Granada Campus Universitario de Cartuja, s/n. 18071 Granada, Spain
| | - Marisa Cañadas-Garre
- Pharmacogenetics Unit. UGC Provincial de Farmacia de Granada. Instituto de Investigación Biosanitaria de Granada. Complejo Hospitalario Universitario de Granada. Avda. Fuerzas Armadas, 2. 18014 Granada, Spain
| | - Miguel Ángel Molina
- PANGAEA BIOTECH, S.L. Hospital Universitario Quirón Dexeus. C/Sabino Arana, 5-19. 08028 Barcelona
| | - María José Faus-Dáder
- Department of Biochemistry. Faculty of Pharmacy. University of Granada Campus Universitario de Cartuja, s/n. 18071 Granada, Spain
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit. UGC Provincial de Farmacia de Granada. Instituto de Investigación Biosanitaria de Granada. Complejo Hospitalario Universitario de Granada. Avda. Fuerzas Armadas, 2. 18014 Granada, Spain
- Department of Pharmacology. Faculty of Pharmacy. University of Granada. Campus Universitario de Cartuja, s/n. 18071 Granada, Spain
| |
Collapse
|
22
|
Usul Afsar C, Sahin B, Gunaldi M, Kılıc Bagir E, Gumurdulu D, Burgut R, Erkisi M, Kara IO, Paydas S, Karaca F, Ercolak V. Expression of fibroblast growth factor receptor 1, fibroblast growth factor 2, phosphatidyl inositol 3 phosphate kinase and their clinical and prognostic significance in early and advanced stage of squamous cell carcinoma of the lung. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9760-9771. [PMID: 26617686 PMCID: PMC4637771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
AIM Non-small cell lung carcinoma is the leading cause of cancer related to death in the world. Squamous cell lung carcinoma (SqCLC) is the second most frequent histological subtype of lung carcinomas. Recently, growth factors, growth factor receptors, and signal transduction system-related gene amplifications and mutations are extensively under investigation to estimate the prognosis and to develop individualized therapies in SqCLC. In this study, besides the signal transduction molecule phosphatidyl inositol-3-phosphate kinase (IP3K) p110α, we explored the expressions of fibroblast growth factor 2 (FGF2) and receptor-1 (FGFR1) in tumor tissue and also their clinical and prognostic significance in patients with early/advanced SqCLC. MATERIALS AND METHODS From 2005 to 2013, 129 patients (23 early, 106 advanced disease) with a histopathological SqCLC diagnosis were selected from the hospital files of Cukurova University Medical Faculty for this study. Two independent pathologists evaluated FGFR1, FGF2, and PI3K (p110α) expressions in both tumor and stromal tissues from 99 of the patients with sufficient tissue samples, using immunohistochemistry. Considering survival analysis separately for patients with both early and advanced stage diseases, the relationship between the clinical features of the patients and expressions were evaluated by univariate and multivariate analyses. RESULTS FGFR1 expression was found to be low in 59 (60%) patients and high in 40 (40%) patients. For FGF2; 12 (12%) patients had high, 87 (88%) patients had low expression and for IP3K; 31 (32%) patients had high and 66 (68%) patients had low expressions. In univariate analysis, overall survival (OS) was significantly associated with stage of the disease and the performance status of the patient (P<0.0001 and P<0.001). There was no significant difference in OS of the patients with either low or high expressions of FGFR1, FGF2, and IP3K. When the patients with early or advanced stage disease were separately taken into consideration, the relationship did not differ, either. Any of FGFR1, FGF2 or IP3K expressions was not found predictive for the treatment of early or advanced staged patients. On the other hand, the expressions of both FGFR1 and FGF2 were significantly different with respect to smoking, scar of tuberculosis and scar of radiotherapy (P=0.002; P=0.06 and P=0.05, respectively). DISCUSSION There has not been identified an effective individualized treatment for SqCLC yet. Therefore, in order to be able to develop such a treatment in the future, it is essential to identify the genetic abnormalities that are responsible for the biological behaviors and carcinogenesis of SqCLC. Although we could not show the prognostic and predictive significance of FGFR1, FGF2 and IP3K expressions in SqCLC, we determined the expression rates of FGFR1, FGF2 and IP3K as a reference for Turkish patients. In conclusion, we want to put some emphasis on the fact that, pulmonary fibrosis which is a late complication of radiotherapy at stage III disease, and the scar of tuberculosis could be associated with FGFR1 and FGF2 expressions.
Collapse
Affiliation(s)
- Cigdem Usul Afsar
- Department of Medical Oncology, Istanbul Training and Research Hospital Istanbul, Turkey
| | - Berksoy Sahin
- Department of Medical Oncology, Cukurova University Medical Faculty Adana, Turkey
| | - Meral Gunaldi
- Department of Medical Oncology, Bakirkoy Sadi Konuk Research and Treatment Hospital Istanbul, Turkey
| | - Emine Kılıc Bagir
- Department of Pathology, Cukurova University Medical Faculty Adana, Turkey
| | - Derya Gumurdulu
- Department of Pathology, Cukurova University Medical Faculty Adana, Turkey
| | - Refik Burgut
- Department of Bioistatistics, Cukurova University Medical Faculty Adana, Turkey
| | - Melek Erkisi
- Department of Medical Oncology, Cukurova University Medical Faculty Adana, Turkey
| | - Ismail Oguz Kara
- Department of Medical Oncology, Cukurova University Medical Faculty Adana, Turkey
| | - Semra Paydas
- Department of Medical Oncology, Cukurova University Medical Faculty Adana, Turkey
| | - Feryal Karaca
- Department of Radiation Oncology, Adana Numune Research and Education Hospital Adana, Turkey
| | - Vehbi Ercolak
- Department of Medical Oncology, Mersin State Hospital Mersin, Turkey
| |
Collapse
|
23
|
Bonelli MA, Cavazzoni A, Saccani F, Alfieri RR, Quaini F, La Monica S, Galetti M, Cretella D, Caffarra C, Madeddu D, Frati C, Lagrasta CA, Falco A, Rossetti P, Fumarola C, Tiseo M, Petronini PG, Ardizzoni A. Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations. Mol Cancer Ther 2015; 14:1916-27. [PMID: 26013318 DOI: 10.1158/1535-7163.mct-14-0892] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
Abstract
A prominent role in the pathogenesis of squamous cell carcinoma of the lung (SQCLC) has been attributed to the aberrant activation of the PI3K signaling pathway, due to amplification or mutations of the p110α subunit of class I phosphatidylinositol 3-kinase (PIK3CA) gene. The aim of our study was to determine whether different genetic alterations of PIK3CA affect the biologic properties of SQCLC and to evaluate the response to specific targeting agents in vitro and in vivo. The effects of NVP-BEZ235, NVP-BKM120, and NVP-BYL719 on two-dimensional/three-dimensional (2D/3D) cellular growth, epithelial-to-mesenchymal transition, and invasiveness were evaluated in E545K or H1047R PIK3CA-mutated SQCLC cells and in newly generated clones carrying PIK3CA alterations, as well as in a xenograft model. PIK3CA mutated/amplified cells showed increased growth rate and enhanced migration and invasiveness, associated with an increased activity of RhoA family proteins and the acquisition of a mesenchymal phenotype. PI3K inhibitors reverted this aggressive phenotype by reducing metalloproteinase production, RhoA activity, and the expression of mesenchymal markers, with the specific PI3K inhibitors NVP-BKM120 and NVP-BYL719 being more effective than the dual PI3K/mTOR inhibitor NVP-BEZ235. A xenograft model of SQCLC confirmed that PIK3CA mutation promotes the acquisition of a mesenchymal phenotype in vivo and proved the efficacy of its specific targeting drug NVP-BYL719 in reducing the growth and the expression of mesenchymal markers in xenotransplanted tumors. These data indicate that PIK3CA mutation/amplification may represent a good predictive feature for the clinical application of specific PI3K inhibitors in SQCLC patients.
Collapse
Affiliation(s)
- Mara A Bonelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | - Andrea Cavazzoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Francesca Saccani
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Roberta R Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Maricla Galetti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy. Italian Workers' Compensation Authority (INAIL) Research Center at the University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Cristina Caffarra
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | | | - Angela Falco
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Pietro Rossetti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Andrea Ardizzoni
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| |
Collapse
|
24
|
Xie X, Liu HT, Mei J, Ding FB, Xiao HB, Hu FQ, Hu R, Wang MS. miR-106a promotes growth and metastasis of non-small cell lung cancer by targeting PTEN. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3827-3834. [PMID: 26097565 PMCID: PMC4466952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
MicroRNAs are a class of small non-coding RNAs that play essential roles in cancer development and progression. Recent studies suggested that abnormal expression of miRNAs occurs frequently in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues. In this study, we investigated the expression and the biological roles of miR-106a in non-small cell lung cancer. Our results showed that miR-106a was up-regulated in NSCLC tissues and cell lines. Inhibition of miR-106a in NSCLC cells substantially inhibited cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a direct target of miR-106a, and over-expression of miR-106a suppressed PTEN by direct binding to its 3'-untranslated region (3'-UTR). Furthermore, the presence of miR-106a was inversely correlated with PTEN in NSCLC tissues. Overall, this study suggested that miR-106a inhibited the growth and metastasis of NSCLC cells by decreasing PTEN expression. These data provide novel insights with potential therapeutic applications for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Hong-Tao Liu
- Department of Cardio-Thoracic Surgery, The first Affiliated Hospital of Soochow UniversitySuzhou 215006, P. R. China
| | - Ju Mei
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Fang-Bao Ding
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Hai-Bo Xiao
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Feng-Qing Hu
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Rui Hu
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Ming-Song Wang
- Department of Cardio-Thoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| |
Collapse
|
25
|
INPP4B overexpression is associated with poor clinical outcome and therapy resistance in acute myeloid leukemia. Leukemia 2015; 29:1485-95. [DOI: 10.1038/leu.2015.51] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 01/09/2023]
|
26
|
Tan J, Yu CY, Wang ZH, Chen HY, Guan J, Chen YX, Fang JY. Genetic variants in the inositol phosphate metabolism pathway and risk of different types of cancer. Sci Rep 2015; 5:8473. [PMID: 25683757 PMCID: PMC4329558 DOI: 10.1038/srep08473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022] Open
Abstract
Members of the inositol phosphate metabolism pathway regulate cell proliferation, migration and phosphatidylinositol-3-kinase (PI3K)/Akt signaling, and are frequently dysregulated in cancer. Whether germline genetic variants in inositol phosphate metabolism pathway are associated with cancer risk remains to be clarified. We examined the association between inositol phosphate metabolism pathway genes and risk of eight types of cancer using data from genome-wide association studies. Logistic regression models were applied to evaluate SNP-level associations. Gene- and pathway-based associations were tested using the permutation-based adaptive rank-truncated product method. The overall inositol phosphate metabolism pathway was significantly associated with risk of lung cancer (P = 2.00 × 10−4), esophageal squamous cell carcinoma (P = 5.70 × 10−3), gastric cancer (P = 3.03 × 10−2) and renal cell carcinoma (P = 1.26 × 10−2), but not with pancreatic cancer (P = 1.40 × 10−1), breast cancer (P = 3.03 × 10−1), prostate cancer (P = 4.51 × 10−1), and bladder cancer (P = 6.30 × 10−1). Our results provide a link between inherited variation in the overall inositol phosphate metabolism pathway and several individual genes and cancer. Further studies will be needed to validate these positive findings, and to explore its mechanisms.
Collapse
Affiliation(s)
- Juan Tan
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Chen-Yang Yu
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Zhen-Hua Wang
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Hao-Yan Chen
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jian Guan
- Department of Otolaryngology, The Affiliated Sixth People's Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying-Xuan Chen
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| |
Collapse
|
27
|
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15:7-24. [PMID: 25533673 PMCID: PMC4384662 DOI: 10.1038/nrc3860] [Citation(s) in RCA: 1007] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to extracellular stimuli. Hyperactivation of PI3K signalling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Lauren M. Thorpe
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haluk Yuzugullu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence to J.J.Z. by
| |
Collapse
|
28
|
Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 2014; 90:197-207. [DOI: 10.1016/j.bcp.2014.05.011] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
|