1
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Yang S, Huang S, Ye X, Xiong K, Zeng B, Shi Y. Risk analysis of grade ≥ 2 radiation pneumonitis based on radiotherapy timeline in stage III/IV non-small cell lung cancer treated with volumetric modulated arc therapy: a retrospective study. BMC Pulm Med 2022; 22:402. [PMID: 36344945 PMCID: PMC9639320 DOI: 10.1186/s12890-022-02211-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Background Radiotherapy is an important treatment for patients with stage III/IV non-small cell lung cancer (NSCLC), and due to its high incidence of radiation pneumonitis, it is essential to identify high-risk people as early as possible. The present work investigates the value of the application of different phase data throughout the radiotherapy process in analyzing risk of grade ≥ 2 radiation pneumonitis in stage III/IV NSCLC. Furthermore, the phase data fusion was gradually performed with the radiotherapy timeline to develop a risk assessment model. Methods This study retrospectively collected data from 91 stage III/IV NSCLC cases treated with Volumetric modulated arc therapy (VMAT). Patient data were collected according to the radiotherapy timeline for four phases: clinical characteristics, radiomics features, radiation dosimetry parameters, and hematological indexes during treatment. Risk assessment models for single-phase and stepwise fusion phases were established according to logistic regression. In addition, a nomogram of the final fusion phase model and risk classification system was generated. Receiver operating characteristic (ROC), decision curve, and calibration curve analysis were conducted to internally validate the nomogram to analyze its discrimination. Results Smoking status, PTV and lung radiomics feature, lung and esophageal dosimetry parameters, and platelets at the third week of radiotherapy were independent risk factors for the four single-phase models. The ROC result analysis of the risk assessment models created by stepwise phase fusion were: (area under curve [AUC]: 0.67,95% confidence interval [CI]: 0.52–0.81), (AUC: 0.82,95%CI: 0.70–0.94), (AUC: 0.90,95%CI: 0.80–1.00), and (AUC:0.90,95%CI: 0.80–1.00), respectively. The nomogram based on the final fusion phase model was validated using calibration curve analysis and decision curve analysis, demonstrating good consistency and clinical utility. The nomogram-based risk classification system could correctly classify cases into three diverse risk groups: low-(ratio:3.6%; 0 < score < 135), intermediate-(ratio:30.7%, 135 < score < 160) and high-risk group (ratio:80.0%, score > 160). Conclusions In our study, the risk assessment model makes it easy for physicians to assess the risk of grade ≥ 2 radiation pneumonitis at various phases in the radiotherapy process, and the risk classification system and nomogram identify the patient’s risk level after completion of radiation therapy.
Collapse
|
3
|
Maddalo M, D'Angelo E, Fiorica F, Argenone A, Scricciolo M, Cozzi S, Nardangeli A, Dionisi F, Costantino G, Vagge S, Pontoriero A, Donato V, Massaccesi M. Thoracic re-irradiation with 3D-conformal or more advanced techniques: A systematic review of treatment safety by the Re-irradiation Study Group of the Italian Association of Radiation and Oncology AIRO. Crit Rev Oncol Hematol 2021; 167:103500. [PMID: 34688894 DOI: 10.1016/j.critrevonc.2021.103500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/20/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022] Open
Abstract
Re-irradiation (re-RT) is a treatment modality that has been actively investigated in recurrent lung cancer or in lung metastases appeared in previously irradiated areas. A literature search, according PRISMA recommendations and a meta-analysis technique were performed with the aims to identify possible factors related to the toxicity incidence and severity of ≥ G3 acute toxicity. 1243 patients and 36 studies, met inclusion criteria. Our results, showed that there was no difference in ≥ G3 acute (10,5%) toxicity rate with respect to different radiation techniques, cumulative dose and re-irradiation total dose and fractionation. Factors eventually related to severe toxicity were described. The frequent lack of a sufficient description of the treatment's intent, the heterogeneity in technique and radiotherapy regimen, makes balancing risk and benefit of re-RT based on published data even more difficult.
Collapse
Affiliation(s)
- Marta Maddalo
- Department of Radiation Oncology, ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
| | - Elisa D'Angelo
- Department of Radiotherapy, University Hospital of Modena, L. del Pozzo 71, 41121, Modena, Italy.
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, State Hospital Mater Salutis AULSS 9, 37045, Legnago (VR), Italy.
| | - Angela Argenone
- Radiotherapy Unit, AORN San PIO, Via dell'Angelo, 82100, Benevento, Italy.
| | - Melissa Scricciolo
- Radiation Therapy Unit, Ospedale dell'Angelo, Via Paccagnella 11, 30174, Venezia, Italy.
| | - Salvatore Cozzi
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy.
| | - Alessia Nardangeli
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, L. Gemelli 1, 00168, Roma, Italy.
| | - Francesco Dionisi
- Department of Research and Advanced Technology, Radiation Oncology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Roma, Italy.
| | - Gianluca Costantino
- Department of Radiation Oncology, ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Stefano Vagge
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria San Martino di Genova-IST, Istituto Nazionale Ricerca sul Cancro, Genoa, Italy.
| | - Antonio Pontoriero
- Dept. of Radiation Oncology, University of Messina, 98125, Messina, Italy.
| | - Vittorio Donato
- Radiation Oncology Division, Oncology and Speciality Medicine Department, San Camillo-Forlanini Hospital, 00152, Roma, Italy.
| | - Mariangela Massaccesi
- Radiation Oncology Department, Gemelli-ART, Università Cattolica S. Cuore, L. Gemelli 1, 00168, Roma, Italy.
| | | |
Collapse
|
4
|
Tang W, Li X, Yu H, Yin X, Zou B, Zhang T, Chen J, Sun X, Liu N, Yu J, Xie P. A novel nomogram containing acute radiation esophagitis predicting radiation pneumonitis in thoracic cancer receiving radiotherapy. BMC Cancer 2021; 21:585. [PMID: 34022830 PMCID: PMC8140476 DOI: 10.1186/s12885-021-08264-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background Radiation-induced pneumonitis (RP) is a non-negligible and sometimes life-threatening complication among patients with thoracic radiation. We initially aimed to ascertain the predictive value of acute radiation-induced esophagitis (SARE, grade ≥ 2) to symptomatic RP (SRP, grade ≥ 2) among thoracic cancer patients receiving radiotherapy. Based on that, we established a novel nomogram model to provide individualized risk assessment for SRP. Methods Thoracic cancer patients who were treated with thoracic radiation from Jan 2018 to Jan 2019 in Shandong Cancer Hospital and Institute were enrolled prospectively. All patients were followed up during and after radiotherapy (RT) to observe the development of esophagitis as well as pneumonitis. Variables were analyzed by univariate and multivariate analysis using the logistic regression model, and a nomogram model was established to predict SRP by “R” version 3.6.0. Results A total of 123 patients were enrolled (64 esophageal cancer, 57 lung cancer and 2 mediastinal cancer) in this study prospectively. RP grades of 0, 1, 2, 3, 4 and 5 occurred in 29, 57, 31, 0, 3 and 3 patients, respectively. SRP appeared in 37 patients (30.1%). In univariate analysis, SARE was shown to be a significant predictive factor for SRP (P < 0.001), with the sensitivity 91.9% and the negative predictive value 93.5%. The incidence of SRP in different grades of ARE were as follows: Grade 0–1: 6.5%; Grade 2: 36.9%; Grade 3: 80.0%; Grade 4: 100%. Besides that, the dosimetric factors considering total lung mean dose, total lung V5, V20, ipsilateral lung mean dose, ipsilateral lung V5, and mean esophagus dose were correlated with SRP (all P < 0.05) by univariate analysis. The incidence of SRP was significantly higher in patients whose symptoms of RP appeared early. SARE, mean esophagus dose and ipsilateral mean lung dose were still significant in multivariate analysis, and they were included to build a predictive nomogram model for SRP. Conclusions As an early index that can reflect the tissue’s radiosensitivity visually, SARE can be used as a predictor for SRP in patients receiving thoracic radiation. And the nomogram containing SARE may be fully applied in future’s clinical work.
Collapse
Affiliation(s)
- Wenjie Tang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Haining Yu
- Department of Human Resource, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiaoyang Yin
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Tingting Zhang
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jinlong Chen
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xindong Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Naifu Liu
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Peng Xie
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China.
| |
Collapse
|
5
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
6
|
Du F, Tang N, Cui Y, Wang W, Zhang Y, Li Z, Li J. A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy. Front Oncol 2020; 10:596013. [PMID: 33392091 PMCID: PMC7774595 DOI: 10.3389/fonc.2020.596013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose We quantitatively analyzed the characteristics of cone-beam computed tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then built a novel nomogram model integrating clinical features and dosimetric parameters for predicting radiation pneumonitis (RP) in patients with esophageal squamous cell carcinoma (ESCC). Methods At our institute, a retrospective study was conducted on 96 ESCC patients for whom we had complete clinical feature and dosimetric parameter data. CBCT images of each patient in three different periods of RT were obtained, the images were segmented using both lungs as the region of interest (ROI), and 851 image features were extracted. The least absolute shrinkage selection operator (LASSO) was applied to identify candidate radiomics features, and logistic regression analyses were applied to construct the rad-score. The optimal period for the rad-score, clinical features, and dosimetric parameters were selected to construct the nomogram model and then the receiver operating characteristic (ROC) curve was used to evaluate the prediction capacity of the model. Calibration curves and decision curves were used to demonstrate the discriminatory and clinical benefit ratios, respectively. Results The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD), and tumor stage were independent predictors of RP and were finally incorporated into the nomogram. When the three time periods were modeled, the first period was better than the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95% confidence interval (CI) 0.568–0.832), and in the independent validation cohort, the AUC was 0.765 (95% CI 0.588–0.941). In the nomogram model that integrates clinical features and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700–0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799–1.000). The nomogram model exhibits excellent performance. Calibration curves indicate a favorable consistency between the nomogram prediction and the actual outcomes. The decision curve exhibits satisfactory clinical utility. Conclusion The radiomics model based on early lung CBCT is a potentially valuable tool for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The developed nomogram model has a better prediction ability than any of the other predictors and can be used as a quantitative model to predict RP.
Collapse
Affiliation(s)
- Feng Du
- Department of Radiation Oncology, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Zibo Municipal Hospital, Zibo, China
| | - Ning Tang
- Department of Radiation Oncology, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuzhong Cui
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Śliwińska-Mossoń M, Wadowska K, Trembecki Ł, Bil-Lula I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. J Pers Med 2020; 10:jpm10030072. [PMID: 32722546 PMCID: PMC7565537 DOI: 10.3390/jpm10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2018, lung cancer was the most common cancer and the most common cause of cancer death, accounting for a 1.76 million deaths. Radiotherapy (RT) is a widely used and effective non-surgical cancer treatment that induces remission in, and even cures, patients with lung cancer. However, RT faces some restrictions linked to the radioresistance and treatment toxicity, manifesting in radiation-induced lung injury (RILI). About 30–40% of lung cancer patients will develop RILI, which next to the local recurrence and distant metastasis is a substantial challenge to the successful management of lung cancer treatment. These data indicate an urgent need of looking for novel, precise biomarkers of individual response and risk of side effects in the course of RT. The aim of this review was to summarize both preclinical and clinical approaches in RILI monitoring that could be brought into clinical practice. Next to transforming growth factor-β1 (TGFβ1) that was reported as one of the most important growth factors expressed in the tissues after ionizing radiation (IR), there is a group of novel, potential biomarkers—microRNAs—that may be used as predictive biomarkers in therapy response and disease prognosis.
Collapse
Affiliation(s)
- Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Katarzyna Wadowska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
- Correspondence:
| | - Łukasz Trembecki
- Department of Radiation Oncology, Lower Silesian Oncology Center, pl. Hirszfelda 12, 53-413 Wroclaw, Poland;
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, pl. Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| |
Collapse
|
8
|
A Novel Nomogram and Risk Classification System Predicting Radiation Pneumonitis in Patients With Esophageal Cancer Receiving Radiation Therapy. Int J Radiat Oncol Biol Phys 2019; 105:1074-1085. [DOI: 10.1016/j.ijrobp.2019.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
|
9
|
Xu L, Jiang J, Li Y, Zhang L, Li Z, Xian J, Jiang C, Diao Y, Su X, Xu H, Zhang Y, Zhang T, Yang Z, Tan B, Li H. Genetic variants of SP-D confer susceptibility to radiation pneumonitis in lung cancer patients undergoing thoracic radiation therapy. Cancer Med 2019; 8:2599-2611. [PMID: 30897289 PMCID: PMC6536953 DOI: 10.1002/cam4.2088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Surfactant protein D (SP‐D) is an innate immunity molecule in the alveoli. However, the associations between genetic variants of SP‐D and radiation pneumonitis (RP) have never been investigated. Methods The Linkage disequilibrium of SP‐D and tagSNPs were analyzed by using Haploview 4.1. Eight tagSNPs were genotyped among 396 lung cancer patients who received thoracic radiation therapy with follow–up time (median [P25, P75]: 11[6, 18]) using improved multiplex ligation detection reaction (iMLDR). The associations between clinical characteristics, tagSNP alleles, genotypes, haplotypes and onset time of grade ≥2 or ≥3 RP were evaluated by using univariate and multivariate Cox proportional hazard regression model. Results Three tagSNPs of SP‐D (rs1998374, rs911887 and rs2255326) were significantly associated with grade ≥2 RP in multivariate analysis with multiple testing (Q test). The rs199874 had a protective effect for grade ≥2 RP in the dominant model (Hazard ratio (HR), 0.575; 95% confidence interval (CI), 0.378‐0.875). The homozygous mutant genotype for rs911887 had risk effect for grade ≥2 RP (HR, 2.209; 95% CI, 1.251‐3.902). The A mutant allele of rs2255326 also showed an elevated risk for grade ≥2 RP (HR, 1.777; 95% CI, 1.283‐2.461) and this risk effect was still significant in the recessive genetic model (HR, 3.320; 95% CI, 1.659‐6.644) and dominant genetic model (HR, 1.773; 95% CI, 1.166‐2.696). Compared to the lung cancer patients bearing the most common haplotype C‐G‐T, the patients bearing the haplotype T‐A‐C (rs1998374‐rs2255326‐rs911887) showed a significant risk of both grade ≥2 RP (HR, 1.885; 95% CI, 1.284‐2.765) and grade ≥3 RP (HR, 2.256; 95% CI, 1.248‐4.080). Conclusions Genetic variants of SP‐D were associated with risk of RP development in lung cancer patients receiving thoracic radiotherapy.
Collapse
Affiliation(s)
- Li Xu
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Department of Nutrition and Dietetics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Junhong Jiang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Department of Oncology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yunming Li
- Department of Statistics, The General Hospital of Western Theater Command, Chengdu, China.,Department of Statistics, College of Mathematics, Southwest Jiaotong University, Chengdu, China
| | - Ling Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhihui Li
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Xian
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Chaoyang Jiang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Yong Diao
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomei Su
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Hongyu Xu
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Yue Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Tao Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhenzhou Yang
- Cancer Center, The Second affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hua Li
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|