1
|
Hasanabadi S, Aghamiri SMR, Abin AA, Abdollahi H, Arabi H, Zaidi H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel) 2024; 16:3511. [PMID: 39456604 PMCID: PMC11505665 DOI: 10.3390/cancers16203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
Collapse
Affiliation(s)
- Setareh Hasanabadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Seyed Mahmud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
2
|
Foffano L, Vida R, Piacentini A, Molteni E, Cucciniello L, Da Ros L, Silvia B, Cereser L, Roncato R, Gerratana L, Puglisi F. Is ctDNA ready to outpace imaging in monitoring early and advanced breast cancer? Expert Rev Anticancer Ther 2024; 24:679-691. [PMID: 38855809 DOI: 10.1080/14737140.2024.2362173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) and radiological imaging are increasingly recognized as crucial elements in breast cancer management. While radiology remains the cornerstone for screening and monitoring, ctDNA holds distinctive advantages in anticipating diagnosis, recurrence, or progression, providing concurrent biological insights complementary to imaging results. AREAS COVERED This review delves into the current evidence on the synergistic relationship between ctDNA and imaging in breast cancer. It presents data on the clinical validity and utility of ctDNA in both early and advanced settings, providing insights into emerging liquid biopsy techniques like epigenetics and fragmentomics. Simultaneously, it explores the present and future landscape of imaging methodologies, particularly focusing on radiomics. EXPERT OPINION Numerous are the current technical, strategic, and economic challenges preventing the clinical integration of ctDNA analysis in the breast cancer monitoring. Understanding these complexities and devising targeted strategies is pivotal to effectively embedding this methodology into personalized patient care.
Collapse
Affiliation(s)
- Lorenzo Foffano
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Vida
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | | | - Elisabetta Molteni
- Department of Medicine, University of Udine, Udine, Italy
- Weill Cornell Medicine, Department of Medicine, Division of Hematology-Oncology, New York, NY, USA
| | - Linda Cucciniello
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Lucia Da Ros
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Buriolla Silvia
- Department of Oncology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Lorenzo Cereser
- Department of Medicine, University of Udine, Udine, Italy
- Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), University Hospital S. Maria della Misericordia, Udine, Italy
| | | | - Lorenzo Gerratana
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| |
Collapse
|
3
|
Wang J, Zhou Y, Zhou J, Liu H, Li X. Preliminary study on the ability of the machine learning models based on 18F-FDG PET/CT to differentiate between mass-forming pancreatic lymphoma and pancreatic carcinoma. Eur J Radiol 2024; 176:111531. [PMID: 38820949 DOI: 10.1016/j.ejrad.2024.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE The objective of this study was to preliminarily assess the ability of metabolic parameters and radiomics derived from 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to distinguish mass-forming pancreatic lymphoma from pancreatic carcinoma using machine learning. METHODS A total of 88 lesions from 86 patients diagnosed as mass-forming pancreatic lymphoma or pancreatic carcinoma were included and randomly divided into a training set and a validation set at a 4-to-1 ratio. The segmentation of regions of interest was performed using ITK-SNAP software, PET metabolic parameters and radiomics features were extracted using 3Dslicer and PYTHON. Following the selection of optimal metabolic parameters and radiomics features, Logistic regression (LR), support vector machine (SVM), and random forest (RF) models were constructed for PET metabolic parameters, CT radiomics, PET radiomics, and PET/CT radiomics. Model performance was assessed in terms of area under the curve (AUC), accuracy, sensitivity, and specificity in both the training and validation sets. RESULTS Strong discriminative ability observed in all models, with AUC values ranging from 0.727 to 0.978. The highest performance exhibited by the combined PET and CT radiomics features. AUC values for PET/CT radiomics models in the training set were LR 0.994, SVM 0.994, RF 0.989. In the validation set, AUC values were LR 0.909, SVM 0.883, RF 0.844. CONCLUSION Machine learning models utilizing the metabolic parameters and radiomics of 18F-FDG PET/CT show promise in distinguishing between pancreatic carcinoma and mass-forming pancreatic lymphoma. Further validation on a larger cohort is necessary before practical implementation in clinical settings.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China; Department of Nuclear Medicine, Dezhou People's Hospital, Dezhou, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jianli Zhou
- Department of Nuclear Medicine, Dezhou People's Hospital, Dezhou, China
| | - Hongwei Liu
- Department of Nuclear Medicine, Dezhou People's Hospital, Dezhou, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
4
|
González-Viguera J, Martínez-Pérez E, Pérez-Montero H, Arangüena M, Guedea F, Gutiérrez-Miguélez C. Hype or hope? A review of challenges in balancing tumor control and treatment toxicity in breast cancer from the perspective of the radiation oncologist. Clin Transl Oncol 2024; 26:561-573. [PMID: 37505372 DOI: 10.1007/s12094-023-03287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The aim of this article is to discuss the challenges and new strategies in managing breast cancer patients, with a specific focus on radiation oncology and the importance of balancing oncologic outcomes with quality of life and post-treatment morbidity. A comprehensive literature review was conducted to identify advances in the management of breast cancer, exploring de-escalation strategies, hypofractionation schemes, predictors and tools for reducing toxicity (radiation-induced lymphocyte apoptosis, deep inspiration breath-hold, adaptive radiotherapy), enhancer treatments (hyperthermia, immunotherapy) and innovative diagnostic modalities (PET-MRI, omics). Balancing oncologic outcomes with quality of life and post-treatment morbidity is crucial in the era of personalized medicine. Radiotherapy plays a critical role in the management of breast cancer patients. Large randomized trials are necessary to generalize some practices and cost remains the main obstacle for many innovations that are already applicable.
Collapse
Affiliation(s)
- Javier González-Viguera
- Radiation Oncology Department, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Evelyn Martínez-Pérez
- Radiation Oncology Department, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Héctor Pérez-Montero
- Radiation Oncology Department, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marina Arangüena
- Radiation Oncology Department, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Radiation Oncology Department, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
5
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
6
|
Travaglio Morales D, Huerga Cabrerizo C, Losantos García I, Coronado Poggio M, Cordero García JM, Llobet EL, Monachello Araujo D, Rizkallal Monzón S, Domínguez Gadea L. Prognostic 18F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer. Diagnostics (Basel) 2023; 13:3394. [PMID: 37998530 PMCID: PMC10670627 DOI: 10.3390/diagnostics13223394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease with different clinical outcomes and poor prognosis. This could be due to tumor heterogeneity. The 18F-FDG PET radiomic parameters permit addressing tumor heterogeneity. Nevertheless, this has been not well studied in ovarian cancer. The aim of our work was to assess the prognostic value of pretreatment 18F-FDG PET radiomic features in patients with HGSOC. A review of 36 patients diagnosed with advanced HGSOC between 2016 and 2020 in our center was performed. Radiomic features were obtained from pretreatment 18F-FDGPET. Disease-free survival (DFS) and overall survival (OS) were calculated. Optimal cutoff values with receiver operating characteristic curve/median values were used. A correlation between radiomic features and DFS/OS was made. The mean DFS was 19.6 months and OS was 37.1 months. Total Lesion Glycolysis (TLG), GLSZM_ Zone Size Non-Uniformity (GLSZM_ZSNU), and GLRLM_Run Length Non-Uniformity (GLRLM_RLNU) were significantly associated with DFS. The survival-curves analysis showed a significant difference of DSF in patients with GLRLM_RLNU > 7388.3 versus patients with lower values (19.7 months vs. 31.7 months, p = 0.035), maintaining signification in the multivariate analysis (p = 0.048). Moreover, Intensity-based Kurtosis was associated with OS (p = 0.027). Pretreatment 18F-FDG PET radiomic features GLRLM_RLNU, GLSZM_ZSNU, and Kurtosis may have prognostic value in patients with advanced HGSOC.
Collapse
Affiliation(s)
- Daniela Travaglio Morales
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
- Nuclear Medicine Department, Halle University Hospital, 06120 Halle, Germany
| | - Carlos Huerga Cabrerizo
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | | - Elena López Llobet
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Chen W, Liu F, Wang R, Qi M, Zhang J, Liu X, Song S. End-to-end deep learning radiomics: development and validation of a novel attention-based aggregate convolutional neural network to distinguish breast diffuse large B-cell lymphoma from breast invasive ductal carcinoma. Quant Imaging Med Surg 2023; 13:6598-6614. [PMID: 37869296 PMCID: PMC10585556 DOI: 10.21037/qims-22-1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/24/2023] [Indexed: 10/24/2023]
Abstract
Background Apart from invasive pathological examination, there is no effective method to differentiate breast diffuse large B-cell lymphoma (DLBCL) from breast invasive ductal carcinoma (IDC). In this study, we aimed to develop and validate an effective deep learning radiomics model to discriminate between DLBCL and IDC. Methods A total of 324 breast nodules from 236 patients with baseline 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) were retrospectively analyzed. After grouping breast DLBCL and breast IDC patients, external and internal datasets were divided according to the data collected by different centers. Preprocessing was then used to process the original PET/CT images and an attention-based aggregate convolutional neural network (AACNN) model was designed. The AACNN model was trained using patches of CT or PET tumor images and optimized with an improved loss function. The final ensemble predictive model was built using distance weight voting. Finally, the model performance was evaluated and statistically verified. Results A total of 249 breast nodules from Fudan University Shanghai Cancer Center (FUSCC) and 75 breast nodules from Shanghai Proton and Heavy Ion Center (SPHIC) were selected as internal and external datasets, respectively. On the internal testing, our method yielded an area under the curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and harmonic mean of precision and sensitivity (F1) of 0.886, 83.0%, 80.9%, 85.0%, 84.8%, 81.2%, and 0.828, respectively. Meanwhile on the external testing, the results were 0.788, 71.6%, 61.4%, 84.7%, 84.0%, 62.6%, and 0.709, respectively. Conclusions Our study outlines a deep learning radiomics method which can automatically, noninvasively, and accurately differentiate breast DLBCL from breast IDC, which will be more in line with the needs and strategies of precision medicine, individualized diagnosis, and treatment.
Collapse
Affiliation(s)
- Wen Chen
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Fei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Rui Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Ming Qi
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Xiaosheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhou Y, Zhang B, Han J, Dai N, Jia T, Huang H, Deng S, Sang S. Development of a radiomic-clinical nomogram for prediction of survival in patients with diffuse large B-cell lymphoma treated with chimeric antigen receptor T cells. J Cancer Res Clin Oncol 2023; 149:11549-11560. [PMID: 37395846 DOI: 10.1007/s00432-023-05038-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND In our current work, an 18F-FDG PET/CT radiomics-based model was developed to assess the progression-free survival (PFS) and overall survival (OS) of patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who received chimeric antigen receptor (CAR)-T cell therapy. METHODS A total of 61 DLBCL cases receiving 18F-FDG PET/CT before CAR-T cell infusion were included in the current analysis, and these patients were randomly assigned to a training cohort (n = 42) and a validation cohort (n = 19). Radiomic features from PET and CT images were obtained using LIFEx software, and radiomics signatures (R-signatures) were then constructed by choosing the optimal parameters according to their PFS and OS. Subsequently, the radiomics model and clinical model were constructed and validated. RESULTS The radiomics model that integrated R-signatures and clinical risk factors showed superior prognostic performance compared with the clinical models in terms of both PFS (C-index: 0.710 vs. 0.716; AUC: 0.776 vs. 0.712) and OS (C-index: 0.780 vs. 0.762; AUC: 0.828 vs. 0.728). For validation, the C-index of the two approaches was 0.640 vs. 0.619 and 0.676 vs. 0.699 for predicting PFS and OS, respectively. Moreover, the AUC was 0.886 vs. 0.635 and 0.778 vs. 0.705, respectively. The calibration curves indicated good agreement, and the decision curve analysis suggested that the net benefit of radiomics models was higher than that of clinical models. CONCLUSIONS PET/CT-derived R-signature could be a potential prognostic biomarker for R/R DLBCL patients undergoing CAR-T cell therapy. Moreover, the risk stratification could be further enhanced when the PET/CT-derived R-signature was combined with clinical factors.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jiangqin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Na Dai
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haiwen Huang
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
9
|
Li Z, Li H, Ralescu AL, Dillman JR, Parikh NA, He L. A novel collaborative self-supervised learning method for radiomic data. Neuroimage 2023; 277:120229. [PMID: 37321358 PMCID: PMC10440826 DOI: 10.1016/j.neuroimage.2023.120229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
The computer-aided disease diagnosis from radiomic data is important in many medical applications. However, developing such a technique relies on labeling radiological images, which is a time-consuming, labor-intensive, and expensive process. In this work, we present the first novel collaborative self-supervised learning method to solve the challenge of insufficient labeled radiomic data, whose characteristics are different from text and image data. To achieve this, we present two collaborative pretext tasks that explore the latent pathological or biological relationships between regions of interest and the similarity and dissimilarity of information between subjects. Our method collaboratively learns the robust latent feature representations from radiomic data in a self-supervised manner to reduce human annotation efforts, which benefits the disease diagnosis. We compared our proposed method with other state-of-the-art self-supervised learning methods on a simulation study and two independent datasets. Extensive experimental results demonstrated that our method outperforms other self-supervised learning methods on both classification and regression tasks. With further refinement, our method will have the potential advantage in automatic disease diagnosis with large-scale unlabeled data available.
Collapse
Affiliation(s)
- Zhiyuan Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anca L Ralescu
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, U niversity of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Veziroglu EM, Farhadi F, Hasani N, Nikpanah M, Roschewski M, Summers RM, Saboury B. Role of Artificial Intelligence in PET/CT Imaging for Management of Lymphoma. Semin Nucl Med 2023; 53:426-448. [PMID: 36870800 DOI: 10.1053/j.semnuclmed.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 03/06/2023]
Abstract
Our review shows that AI-based analysis of lymphoma whole-body FDG-PET/CT can inform all phases of clinical management including staging, prognostication, treatment planning, and treatment response evaluation. We highlight advancements in the role of neural networks for performing automated image segmentation to calculate PET-based imaging biomarkers such as the total metabolic tumor volume (TMTV). AI-based image segmentation methods are at levels where they can be semi-automatically implemented with minimal human inputs and nearing the level of a second-opinion radiologist. Advances in automated segmentation methods are particularly apparent in the discrimination of lymphomatous vs non-lymphomatous FDG-avid regions, which carries through to automated staging. Automated TMTV calculators, in addition to automated calculation of measures such as Dmax are informing robust models of progression-free survival which can then feed into improved treatment planning.
Collapse
Affiliation(s)
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Navid Hasani
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Department of Radiology, University of Alabama at Birmingham, AL
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Ronald M Summers
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
11
|
Liu B, Yu W, Zhang F, Shi Y, Yang L, Jiang Q, Wang Y, Wang Y. Detecting obstructive coronary artery disease with machine learning: rest-only gated single photon emission computed tomography myocardial perfusion imaging combined with coronary artery calcium score and cardiovascular risk factors. Quant Imaging Med Surg 2023; 13:1524-1536. [PMID: 36915324 PMCID: PMC10006131 DOI: 10.21037/qims-22-758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023]
Abstract
Background The rest-only single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has low diagnostic performance for obstructive coronary artery disease (CAD). Coronary artery calcium score (CACS) is strongly associated with obstructive CAD. The aim of this study was to investigate the performance of rest-only gated SPECT MPI combined with CACS and cardiovascular risk factors in diagnosing obstructive CAD through machine learning (ML). Methods We enrolled 253 suspected CAD patients who underwent the 1-stop rest-only SPECT MPI and computed tomography (CT) scan due to stress test-related contraindications. Myocardial perfusion and wall motion were assessed using quantitative perfusion SPECT + quantitative gated SPECT (QPS + QGS) automated quantification software. The Agatston algorithm was used to calculate CACS. The clinical data of patients, including cardiovascular risk factors, were collected. Based on feature selection and clinical experience, 8 factors were identified as modeling variables. Subsequently, patients were divided randomly into 2 groups: the training (70%) and test (30%) groups. The performance of 8 supervised ML algorithms was evaluated in the training and test groups. Results Obstructive CAD was diagnosed by coronary angiography in 94 (37.2%, 94/253) patients. In the training group, the area under the receiver operator characteristic (ROC) curve (AUC) of the random forest was the highest, and the AUCs of Logistic, extreme gradient boosting (XGBoost), support vector machine (SVM), and adaptive boosting (AdaBoost) were all above 0.9. In the test group, the AUC of recursive partitioning and regression trees (Rpart) was the highest (0.911). Rpart and Naïve Bayes had the highest accuracy (0.840). Rpart had a sensitivity and specificity of 0.851 and 0.821, respectively; Naïve Bayes had a sensitivity and specificity of 0.809 and 0.893, respectively. Next was Logistic, with an accuracy of 0.827, a sensitivity of 0.872, and a specificity of 0.750. The random forest and XGBoost algorithms also had high accuracy, which was 0.813 for each algorithm. Conclusions Rest-only SPECT MPI combined with CACS and cardiovascular risk factors using an ML algorithm to detect obstructive CAD is feasible. Among the algorithms validated in the test group, Rpart, Naïve Bayes, XGBoost, Logistic, and random forest are all highly accurate for diagnosing obstructive CAD. The application of ML in resting MPI and CACS may be used for screening obstructive CAD.
Collapse
Affiliation(s)
- Bao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Wenji Yu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Feifei Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Yunmei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Le Yang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Qi Jiang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Yufeng Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
13
|
Kotsyfakis S, Iliaki-Giannakoudaki E, Anagnostopoulos A, Papadokostaki E, Giannakoudakis K, Goumenakis M, Kotsyfakis M. The application of machine learning to imaging in hematological oncology: A scoping review. Front Oncol 2022; 12:1080988. [PMID: 36605438 PMCID: PMC9808781 DOI: 10.3389/fonc.2022.1080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Here, we conducted a scoping review to (i) establish which machine learning (ML) methods have been applied to hematological malignancy imaging; (ii) establish how ML is being applied to hematological cancer radiology; and (iii) identify addressable research gaps. Methods The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. The inclusion criteria were (i) pediatric and adult patients with suspected or confirmed hematological malignancy undergoing imaging (population); (ii) any study using ML techniques to derive models using radiological images to apply to the clinical management of these patients (concept); and (iii) original research articles conducted in any setting globally (context). Quality Assessment of Diagnostic Accuracy Studies 2 criteria were used to assess diagnostic and segmentation studies, while the Newcastle-Ottawa scale was used to assess the quality of observational studies. Results Of 53 eligible studies, 33 applied diverse ML techniques to diagnose hematological malignancies or to differentiate them from other diseases, especially discriminating gliomas from primary central nervous system lymphomas (n=18); 11 applied ML to segmentation tasks, while 9 applied ML to prognostication or predicting therapeutic responses, especially for diffuse large B-cell lymphoma. All studies reported discrimination statistics, but no study calculated calibration statistics. Every diagnostic/segmentation study had a high risk of bias due to their case-control design; many studies failed to provide adequate details of the reference standard; and only a few studies used independent validation. Conclusion To deliver validated ML-based models to radiologists managing hematological malignancies, future studies should (i) adhere to standardized, high-quality reporting guidelines such as the Checklist for Artificial Intelligence in Medical Imaging; (ii) validate models in independent cohorts; (ii) standardize volume segmentation methods for segmentation tasks; (iv) establish comprehensive prospective studies that include different tumor grades, comparisons with radiologists, optimal imaging modalities, sequences, and planes; (v) include side-by-side comparisons of different methods; and (vi) include low- and middle-income countries in multicentric studies to enhance generalizability and reduce inequity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences, Budweis (Ceske Budejovice), Czechia,*Correspondence: Michail Kotsyfakis,
| |
Collapse
|
14
|
Lovinfosse P, Ferreira M, Withofs N, Jadoul A, Derwael C, Frix AN, Guiot J, Bernard C, Diep AN, Donneau AF, Lejeune M, Bonnet C, Vos W, Meyer PE, Hustinx R. Distinction of Lymphoma from Sarcoidosis on 18F-FDG PET/CT: Evaluation of Radiomics-Feature-Guided Machine Learning Versus Human Reader Performance. J Nucl Med 2022; 63:1933-1940. [PMID: 35589406 PMCID: PMC9730930 DOI: 10.2967/jnumed.121.263598] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcoidosis and lymphoma often share common features on 18F-FDG PET/CT, such as intense hypermetabolic lesions in lymph nodes and multiple organs. We aimed at developing and validating radiomics signatures to differentiate sarcoidosis from Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL). Methods: We retrospectively collected 420 patients (169 sarcoidosis, 140 HL, and 111 DLBCL) who underwent pretreatment 18F-FDG PET/CT at the University Hospital of Liege. The studies were randomly distributed to 4 physicians, who gave their diagnostic suggestion among the 3 diseases. The individual and pooled performance of the physicians was then calculated. Interobserver variability was evaluated using a sample of 34 studies interpreted by all physicians. Volumes of interest were delineated over the lesions and the liver using MIM software, and 215 radiomics features were extracted using the RadiomiX Toolbox. Models were developed combining clinical data (age, sex, and weight) and radiomics (original and tumor-to-liver TLR radiomics), with 7 different feature selection approaches and 4 different machine-learning (ML) classifiers, to differentiate sarcoidosis and lymphomas on both lesion-based and patient-based approaches. Results: For identifying lymphoma versus sarcoidosis, physicians' pooled sensitivity, specificity, area under the receiver-operating-characteristic curve (AUC), and accuracy were 0.99 (95% CI, 0.97-1.00), 0.75 (95% CI, 0.68-0.81), 0.87 (95% CI, 0.84-0.90), and 89.3%, respectively, whereas for identifying HL in the tumor population, it was 0.58 (95% CI, 0.49-0.66), 0.82 (95% CI, 0.74-0.89), 0.70 (95% CI, 0.64-0.75) and 68.5%, respectively. Moderate agreement was found among observers for the diagnosis of lymphoma versus sarcoidosis and HL versus DLBCL, with Fleiss κ-values of 0.66 (95% CI, 0.45-0.87) and 0.69 (95% CI, 0.45-0.93), respectively. The best ML models for identifying lymphoma versus sarcoidosis showed an AUC of 0.94 (95% CI, 0.93-0.95) and 0.85 (95% CI, 0.82-0.88) in lesion- and patient-based approaches, respectively, using TLR radiomics (plus age for the second). To differentiate HL from DLBCL, we obtained an AUC of 0.95 (95% CI, 0.93-0.96) in the lesion-based approach using TLR radiomics and 0.86 (95% CI, 0.80-0.91) in the patient-based approach using original radiomics and age. Conclusion: Characterization of sarcoidosis and lymphoma lesions is feasible using ML and radiomics, with very good to excellent performance, equivalent to or better than that of physicians, who showed significant interobserver variability in their assessment.
Collapse
Affiliation(s)
- Pierre Lovinfosse
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, Liège, Belgium
| | - Marta Ferreira
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, Liège, Belgium
| | - Alexandre Jadoul
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, Liège, Belgium
| | - Céline Derwael
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, Liège, Belgium
| | - Anne-Noelle Frix
- Department of Respiratory Medicine, CHU of Liège, Liège, Belgium
| | - Julien Guiot
- Department of Respiratory Medicine, CHU of Liège, Liège, Belgium
| | - Claire Bernard
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, Liège, Belgium
| | - Anh Nguyet Diep
- Biostatistics Unit, Department of Public Health, University of Liège, Liège, Belgium
| | | | - Marie Lejeune
- Department of Hematology, CHU of Liège, Liège, Belgium
| | | | - Wim Vos
- Radiomics SA, Liège, Belgium; and
| | - Patrick E. Meyer
- Bioinformatics and Systems Biology Lab, University of Liège, Liège, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, Liège, Belgium
| |
Collapse
|
15
|
Urso L, Manco L, Castello A, Evangelista L, Guidi G, Castellani M, Florimonte L, Cittanti C, Turra A, Panareo S. PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review. Int J Mol Sci 2022; 23:13409. [PMID: 36362190 PMCID: PMC9653918 DOI: 10.3390/ijms232113409] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous malignancy that still represents the second cause of cancer-related death among women worldwide. Due to the heterogeneity of BC, the correct identification of valuable biomarkers able to predict tumor biology and the best treatment approaches are still far from clear. Although molecular imaging with positron emission tomography/computed tomography (PET/CT) has improved the characterization of BC, these methods are not free from drawbacks. In recent years, radiomics and artificial intelligence (AI) have been playing an important role in the detection of several features normally unseen by the human eye in medical images. The present review provides a summary of the current status of radiomics and AI in different clinical settings of BC. A systematic search of PubMed, Web of Science and Scopus was conducted, including all articles published in English that explored radiomics and AI analyses of PET/CT images in BC. Several studies have demonstrated the potential role of such new features for the staging and prognosis as well as the assessment of biological characteristics. Radiomics and AI features appear to be promising in different clinical settings of BC, although larger prospective trials are needed to confirm and to standardize this evidence.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 44124 Ferrara, Italy
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Evangelista
- Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Gabriele Guidi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
16
|
Liu X, Hu X, Yu X, Li P, Gu C, Liu G, Wu Y, Li D, Wang P, Cai J. Frontiers and hotspots of 18F-FDG PET/CT radiomics: A bibliometric analysis of the published literature. Front Oncol 2022; 12:965773. [PMID: 36176388 PMCID: PMC9513237 DOI: 10.3389/fonc.2022.965773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To illustrate the knowledge hotspots and cutting-edge research trends of 18F-FDG PET/CT radiomics, the knowledge structure of was systematically explored and the visualization map was analyzed. Methods Studies related to 18F-FDG PET/CT radiomics from 2013 to 2021 were identified and selected from the Web of Science Core Collection (WoSCC) using retrieval formula based on an interview. Bibliometric methods are mainly performed by CiteSpace 5.8.R3, which we use to build knowledge structures including publications, collaborative and co-cited studies, burst analysis, and so on. The performance and relevance of countries, institutions, authors, and journals were measured by knowledge maps. The research foci were analyzed through research of keywords, as well as literature co-citation analysis. Predicting trends of 18F-FDG PET/CT radiomics in this field utilizes a citation burst detection method. Results Through a systematic literature search, 457 articles, which were mainly published in the United States (120 articles) and China (83 articles), were finally included in this study for analysis. Memorial Sloan-Kettering Cancer Center and Southern Medical University are the most productive institutions, both with a frequency of 17. 18F-FDG PET/CT radiomics–related literature was frequently published with high citation in European Journal of Nuclear Medicine and Molecular Imaging (IF9.236, 2020), Frontiers in Oncology (IF6.244, 2020), and Cancers (IF6.639, 2020). Further cluster profile of keywords and literature revealed that the research hotspots were primarily concentrated in the fields of image, textural feature, and positron emission tomography, and the hot research disease is a malignant tumor. Document co-citation analysis suggested that many scholars have a co-citation relationship in studies related to imaging biomarkers, texture analysis, and immunotherapy simultaneously. Burst detection suggests that adenocarcinoma studies are frontiers in 18F-FDG PET/CT radiomics, and the landmark literature put emphasis on the reproducibility of 18F-FDG PET/CT radiomics features. Conclusion First, this bibliometric study provides a new perspective on 18F-FDG PET/CT radiomics research, especially for clinicians and researchers providing scientific quantitative analysis to measure the performance and correlation of countries, institutions, authors, and journals. Above all, there will be a continuing growth in the number of publications and citations in the field of 18F-FDG PET/CT. Second, the international research frontiers lie in applying 18F-FDG PET/CT radiomics to oncology research. Furthermore, new insights for researchers in future studies will be adenocarcinoma-related analyses. Moreover, our findings also offer suggestions for scholars to give attention to maintaining the reproducibility of 18F-FDG PET/CT radiomics features.
Collapse
Affiliation(s)
- Xinghai Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Yu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Pujiao Li
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Cheng Gu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Guosheng Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Yan Wu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| |
Collapse
|
17
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
18
|
Qian L, Yang S, Zhang S, Qin H, Wang W, Kan Y, Liu L, Li J, Zhang H, Yang J. Prediction of MYCN Amplification, 1p and 11q Aberrations in Pediatric Neuroblastoma via Pre-therapy 18F-FDG PET/CT Radiomics. Front Med (Lausanne) 2022; 9:840777. [PMID: 35372427 PMCID: PMC8971895 DOI: 10.3389/fmed.2022.840777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose This study aimed to assess the predictive ability of 18F-FDG PET/CT radiomic features for MYCN, 1p and 11q abnormalities in NB. Method One hundred and twenty-two pediatric patients (median age 3. 2 years, range, 0.2–9.8 years) with NB were retrospectively enrolled. Significant features by multivariable logistic regression were retained to establish a clinical model (C_model), which included clinical characteristics. 18F-FDG PET/CT radiomic features were extracted by Computational Environment for Radiological Research. The least absolute shrinkage and selection operator (LASSO) regression was used to select radiomic features and build models (R-model). The predictive performance of models constructed by clinical characteristic (C_model), radiomic signature (R_model), and their combinations (CR_model) were compared using receiver operating curves (ROCs). Nomograms based on the radiomic score (rad-score) and clinical parameters were developed. Results The patients were classified into a training set (n = 86) and a test set (n = 36). Accordingly, 6, 8, and 7 radiomic features were selected to establish R_models for predicting MYCN, 1p and 11q status. The R_models showed a strong power for identifying these aberrations, with area under ROC curves (AUCs) of 0.96, 0.89, and 0.89 in the training set and 0.92, 0.85, and 0.84 in the test set. When combining clinical characteristics and radiomic signature, the AUCs increased to 0.98, 0.91, and 0.93 in the training set and 0.96, 0.88, and 0.89 in the test set. The CR_models had the greatest performance for MYCN, 1p and 11q predictions (P < 0.05). Conclusions The pre-therapy 18F-FDG PET/CT radiomics is able to predict MYCN amplification and 1p and 11 aberrations in pediatric NB, thus aiding tumor stage, risk stratification and disease management in the clinical practice.
Collapse
Affiliation(s)
- Luodan Qian
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shen Yang
- Department of Surgical Oncology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shuxin Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Qin
- Department of Surgical Oncology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Sinounion Medical Technology (Beijing) Co., Ltd., Beijing, China
| | - Jixia Li
- Department of Molecular Medicine and Pathology, School of Medical Science, The University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine of Medical School, Foshan University, Foshan, China
- *Correspondence: Jixia Li
| | - Hui Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Jigang Yang
| |
Collapse
|
19
|
Jiang H, Li A, Ji Z, Tian M, Zhang H. Role of Radiomics-Based Baseline PET/CT Imaging in Lymphoma: Diagnosis, Prognosis, and Response Assessment. Mol Imaging Biol 2022; 24:537-549. [PMID: 35031945 DOI: 10.1007/s11307-022-01703-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Radiomic analysis provides information on the underlying tumour heterogeneity in lymphoma, reflecting the real-time evolution of malignancy. 2-Deoxy-2-[18F] fluoro-D-glucose positron emission tomography ([18F] FDG PET/CT) imaging is recommended before, during, and at the end of treatment for almost all lymphoma patients. This methodology offers high specificity and sensitivity, which can aid in accurate staging and assist in prompt treatment. Pretreatment [18F] FDG PET/CT-based radiomics facilitates improved diagnostic ability, guides individual treatment regimens, and boosts outcome prognosis based on heterogeneity as well as the biological, pathological, and metabolic status of the lymphoma. This technique has attracted considerable attention given its numerous applications in medicine. In the current review, we will briefly describe the basic radiomics workflow and types of radiomic features. Details of current applications of baseline [18F] FDG PET/CT-based radiomics in lymphoma will be discussed, such as differential diagnosis from other primary malignancies, diagnosis of bone marrow involvement, and response and prognostic prediction. We will also describe how this technique provides a unique noninvasive platform to assess tumour heterogeneity. Newly emerging PET radiotracers and multimodality technology will improve diagnostic specificity and further clarify tumor biology and even genetic variations in lymphoma, potentially promoting the development of precision medicine.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ang Li
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhongyou Ji
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Hasani N, Paravastu SS, Farhadi F, Yousefirizi F, Morris MA, Rahmim A, Roschewski M, Summers RM, Saboury B. Artificial Intelligence in Lymphoma PET Imaging:: A Scoping Review (Current Trends and Future Directions). PET Clin 2022; 17:145-174. [PMID: 34809864 PMCID: PMC8735853 DOI: 10.1016/j.cpet.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation of lymphocytes. 18F-FDG-PET has proven to provide essential information for accurate quantification of disease burden, treatment response evaluation, and prognostication. However, manual delineation of hypermetabolic lesions is often a time-consuming and impractical task. Applications of artificial intelligence (AI) may provide solutions to overcome this challenge. Beyond segmentation and detection of lesions, AI could enhance tumor characterization and heterogeneity quantification, as well as treatment response prediction and recurrence risk stratification. In this scoping review, we have systematically mapped and discussed the current applications of AI (such as detection, classification, segmentation as well as the prediction and prognostication) in lymphoma PET.
Collapse
Affiliation(s)
- Navid Hasani
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
| | - Sriram S Paravastu
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, BC Cancer Research Institute, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Ronald M Summers
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA.
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
AI-enhanced simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. Eur J Nucl Med Mol Imaging 2021; 49:596-608. [PMID: 34374796 PMCID: PMC8803815 DOI: 10.1007/s00259-021-05492-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Purpose To assess whether a radiomics and machine learning (ML) model combining quantitative parameters and radiomics features extracted from simultaneous multiparametric 18F-FDG PET/MRI can discriminate between benign and malignant breast lesions. Methods A population of 102 patients with 120 breast lesions (101 malignant and 19 benign) detected on ultrasound and/or mammography was prospectively enrolled. All patients underwent hybrid 18F-FDG PET/MRI for diagnostic purposes. Quantitative parameters were extracted from DCE (MTT, VD, PF), DW (mean ADC of breast lesions and contralateral breast parenchyma), PET (SUVmax, SUVmean, and SUVminimum of breast lesions, as well as SUVmean of the contralateral breast parenchyma), and T2-weighted images. Radiomics features were extracted from DCE, T2-weighted, ADC, and PET images. Different diagnostic models were developed using a fine Gaussian support vector machine algorithm which explored different combinations of quantitative parameters and radiomics features to obtain the highest accuracy in discriminating between benign and malignant breast lesions using fivefold cross-validation. The performance of the best radiomics and ML model was compared with that of expert reader review using McNemar’s test. Results Eight radiomics models were developed. The integrated model combining MTT and ADC with radiomics features extracted from PET and ADC images obtained the highest accuracy for breast cancer diagnosis (AUC 0.983), although its accuracy was not significantly higher than that of expert reader review (AUC 0.868) (p = 0.508). Conclusion A radiomics and ML model combining quantitative parameters and radiomics features extracted from simultaneous multiparametric 18F-FDG PET/MRI images can accurately discriminate between benign and malignant breast lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05492-z.
Collapse
|
22
|
|
23
|
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021; 28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
Collapse
|
24
|
Cheng Z, Wen J, Huang G, Yan J. Applications of artificial intelligence in nuclear medicine image generation. Quant Imaging Med Surg 2021; 11:2792-2822. [PMID: 34079744 PMCID: PMC8107336 DOI: 10.21037/qims-20-1078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Recently, the application of artificial intelligence (AI) in medical imaging (including nuclear medicine imaging) has rapidly developed. Most AI applications in nuclear medicine imaging have focused on the diagnosis, treatment monitoring, and correlation analyses with pathology or specific gene mutation. It can also be used for image generation to shorten the time of image acquisition, reduce the dose of injected tracer, and enhance image quality. This work provides an overview of the application of AI in image generation for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) either without or with anatomical information [CT or magnetic resonance imaging (MRI)]. This review focused on four aspects, including imaging physics, image reconstruction, image postprocessing, and internal dosimetry. AI application in generating attenuation map, estimating scatter events, boosting image quality, and predicting internal dose map is summarized and discussed.
Collapse
Affiliation(s)
- Zhibiao Cheng
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junhai Wen
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jianhua Yan
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
25
|
Bevilacqua A, Calabrò D, Malavasi S, Ricci C, Casadei R, Campana D, Baiocco S, Fanti S, Ambrosini V. A [68Ga]Ga-DOTANOC PET/CT Radiomic Model for Non-Invasive Prediction of Tumour Grade in Pancreatic Neuroendocrine Tumours. Diagnostics (Basel) 2021; 11:diagnostics11050870. [PMID: 34065981 PMCID: PMC8150289 DOI: 10.3390/diagnostics11050870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Predicting grade 1 (G1) and 2 (G2) primary pancreatic neuroendocrine tumour (panNET) is crucial to foresee panNET clinical behaviour. Fifty-one patients with G1-G2 primary panNET demonstrated by pre-surgical [68Ga]Ga-DOTANOC PET/CT and diagnostic conventional imaging were grouped according to the tumour grade assessment method: histology on the whole excised primary lesion (HS) or biopsy (BS). First-order and second-order radiomic features (RFs) were computed from SUV maps for the whole tumour volume on HS. The RFs showing the lowest p-values and the highest area under the curve (AUC) were selected. Three radiomic models were assessed: A (trained on HS, validated on BS), B (trained on BS, validated on HS), and C (using the cross-validation on the whole dataset). The second-order normalized homogeneity and entropy was the most effective RFs couple predicting G2 and G1. The best performance was achieved by model A (test AUC = 0.90, sensitivity = 0.88, specificity = 0.89), followed by model C (median test AUC = 0.87, sensitivity = 0.83, specificity = 0.82). Model B performed worse. Using HS to train a radiomic model leads to the best prediction, although a “hybrid” (HS+BS) population performs better than biopsy-only. The non-invasive prediction of panNET grading may be especially useful in lesions not amenable to biopsy while [68Ga]Ga-DOTANOC heterogeneity might recommend FDG PET/CT.
Collapse
Affiliation(s)
- Alessandro Bevilacqua
- Advanced Research Center for Electronic Systems (ARCES), University of Bologna, I-40125 Bologna, Italy; (S.M.); (S.B.)
- Department of Computer Science and Engineering (DISI), University of Bologna, I-40136 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-5409
| | - Diletta Calabrò
- Department of Nuclear Medicine, DIMES, Alma Mater Studiorum, University of Bologna, I-40126 Bologna, Italy; (D.C.); (S.F.)
| | - Silvia Malavasi
- Advanced Research Center for Electronic Systems (ARCES), University of Bologna, I-40125 Bologna, Italy; (S.M.); (S.B.)
- Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, I-40126 Bologna, Italy
| | - Claudio Ricci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, I-40138 Bologna, Italy; (C.R.); (R.C.); (D.C.)
- Department of Surgery, DIMEC Alma Mater Studiorum, University of Bologna, S.Orsola-Malpighi Hospital, I-40138 Bologna, Italy
- NET Team Bologna, ENETS Center of Excellence, I-40138 Bologna, Italy
| | - Riccardo Casadei
- IRCCS Azienda Ospedaliero Universitaria di Bologna, I-40138 Bologna, Italy; (C.R.); (R.C.); (D.C.)
- Department of Surgery, DIMEC Alma Mater Studiorum, University of Bologna, S.Orsola-Malpighi Hospital, I-40138 Bologna, Italy
- NET Team Bologna, ENETS Center of Excellence, I-40138 Bologna, Italy
| | - Davide Campana
- IRCCS Azienda Ospedaliero Universitaria di Bologna, I-40138 Bologna, Italy; (C.R.); (R.C.); (D.C.)
- NET Team Bologna, ENETS Center of Excellence, I-40138 Bologna, Italy
- Department of Oncology, DIMES Alma Mater Studiorum, University of Bologna, S.Orsola-Malpighi Hospital, I-40126 Bologna, Italy
| | - Serena Baiocco
- Advanced Research Center for Electronic Systems (ARCES), University of Bologna, I-40125 Bologna, Italy; (S.M.); (S.B.)
| | - Stefano Fanti
- Department of Nuclear Medicine, DIMES, Alma Mater Studiorum, University of Bologna, I-40126 Bologna, Italy; (D.C.); (S.F.)
- IRCCS Azienda Ospedaliero Universitaria di Bologna, I-40138 Bologna, Italy; (C.R.); (R.C.); (D.C.)
- NET Team Bologna, ENETS Center of Excellence, I-40138 Bologna, Italy
| | - Valentina Ambrosini
- Department of Nuclear Medicine, DIMES, Alma Mater Studiorum, University of Bologna, I-40126 Bologna, Italy; (D.C.); (S.F.)
- IRCCS Azienda Ospedaliero Universitaria di Bologna, I-40138 Bologna, Italy; (C.R.); (R.C.); (D.C.)
- NET Team Bologna, ENETS Center of Excellence, I-40138 Bologna, Italy
| |
Collapse
|
26
|
Krajnc D, Papp L, Nakuz TS, Magometschnigg HF, Grahovac M, Spielvogel CP, Ecsedi B, Bago-Horvath Z, Haug A, Karanikas G, Beyer T, Hacker M, Helbich TH, Pinker K. Breast Tumor Characterization Using [ 18F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics. Cancers (Basel) 2021; 13:cancers13061249. [PMID: 33809057 PMCID: PMC8000810 DOI: 10.3390/cancers13061249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the second most common diagnosed malignancy in women worldwide. In this study, we examine the feasibility of breast tumor characterization based on [18F]FDG-PET/CT images using machine learning (ML) approaches in combination with data-preprocessing techniques. ML prediction models for breast cancer detection and the identification of breast cancer receptor status, proliferation rate, and molecular subtypes were established and evaluated. Furthermore, the importance of most repeatable features was investigated. Results displayed high performance of malignant/benign tumor differentiation and triple negative tumor subtype ML models. We observed high repeatability of radiomic features for both high performing predictive models. Abstract Background: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [18F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. Methods: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [18F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. Results: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46–0.68 AUC). SUVmax model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. Conclusions: Predictive models based on [18F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.
Collapse
Affiliation(s)
- Denis Krajnc
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
| | - Laszlo Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
| | - Thomas S. Nakuz
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
| | - Heinrich F. Magometschnigg
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (H.F.M.); (T.H.H.); or (K.P.)
| | - Marko Grahovac
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Clemens P. Spielvogel
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Boglarka Ecsedi
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
| | | | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Georgios Karanikas
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
- Correspondence:
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
| | - Thomas H. Helbich
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (H.F.M.); (T.H.H.); or (K.P.)
| | - Katja Pinker
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (H.F.M.); (T.H.H.); or (K.P.)
- Memorial Sloan Kettering Cancer Center, Breast Imaging Service, Department of Radiology, New York, NY 10065, USA
| |
Collapse
|
27
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
28
|
Mayerhoefer ME, Umutlu L, Schöder H. Functional imaging using radiomic features in assessment of lymphoma. Methods 2020; 188:105-111. [PMID: 32634555 DOI: 10.1016/j.ymeth.2020.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Lymphomas are typically large, well-defined, and relatively homogeneous tumors, and therefore represent ideal targets for the use of radiomics. Of the available functional imaging tests, [18F]FDG-PET for body lymphoma and diffusion-weighted MRI (DWI) for central nervous system (CNS) lymphoma are of particular interest. The current literature suggests that two main applications for radiomics in lymphoma show promise: differentiation of lymphomas from other tumors, and lymphoma treatment response and outcome prognostication. In particular, encouraging results reported in the limited number of presently available studies that utilize functional imaging suggest that (1) MRI-based radiomics enables differentiation of CNS lymphoma from glioblastoma, and (2) baseline [18F]FDG-PET radiomics could be useful for survival prognostication, adding to or even replacing commonly used metrics such as standardized uptake values and metabolic tumor volume. However, due to differences in biological and clinical characteristics of different lymphoma subtypes and an increasing number of treatment options, more data are required to support these findings. Furthermore, a consensus on several critical steps in the radiomics workflow -most importantly, image reconstruction and post processing, lesion segmentation, and choice of classification algorithm- is desirable to ensure comparability of results between research institutions.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| |
Collapse
|
29
|
Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol 2020; 30:6228-6240. [PMID: 32472274 DOI: 10.1007/s00330-020-06927-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To perform a systematic review regarding the developments in the field of radiomics in lymphoma. To evaluate the quality of included articles by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), the phases classification criteria for image mining studies, and the radiomics quality scoring (RQS) tool. METHODS We searched for eligible articles in the MEDLINE/PubMed and EMBASE databases using the terms "radiomics", "texture" and "lymphoma". The included studies were divided into two categories: diagnosis-, therapy response- and outcome-related studies. The diagnosis-related studies were evaluated using the QUADAS-2; all studies were evaluated using the phases classification criteria for image mining studies and the RQS tool by two reviewers. RESULTS Forty-five studies were included; thirteen papers (28.9%) focused on the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM). Thirty-two (71.1%) studies were classified as discovery science according to the phase classification criteria for image mining studies. The mean RQS score of all studies was 14.2% (ranging from 0.0 to 40.3%), and 23 studies (51.1%) were given a score of < 10%. CONCLUSION The radiomics features could serve as diagnostic and prognostic indicators in lymphoma. However, the current conclusions should be interpreted with caution due to the suboptimal quality of the studies. In order to introduce radiomics into lymphoma clinical settings, the lesion segmentation and selection, the influence of the pathological pattern and the extraction of multiple modalities and multiple time points features need to be further studied. KEY POINTS • The radiomics approach may provide useful information for diagnosis, prediction of the therapy response, and outcome of lymphoma. • The quality of published radiomics studies in lymphoma has been suboptimal to date. • More studies are needed to examine lesion selection and segmentation, the influence of pathological patterns, and the extraction of multiple modalities and multiple time point features.
Collapse
|
30
|
Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, Bellomi M, Jereczek-Fossa BA, Pinotti G, Cassano E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol 2020; 37:29. [PMID: 32180032 DOI: 10.1007/s12032-020-01353-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The diagnosis of breast cancer currently relies on radiological and clinical evaluation, confirmed by histopathological examination. However, such approach has some limitations as the suboptimal sensitivity, the long turnaround time for recall tests, the invasiveness of the procedure and the risk that some features of target lesions may remain undetected, making re-biopsy a necessity. Recent technological advances in the field of artificial intelligence hold promise in addressing such medical challenges not only in cancer diagnosis, but also in treatment assessment, and monitoring of disease progression. In the perspective of a truly personalised medicine, based on the early diagnosis and individually tailored treatments, two new technologies, namely radiomics and liquid biopsy, are rising as means to obtain information from diagnosis to molecular profiling and response assessment, without the need of a biopsied tissue sample. Radiomics works through the extraction of quantitative peculiar features of cancer from radiological data, while liquid biopsy gets the whole of the malignancy's biology from something as easy as a blood sample. Both techniques hopefully will identify diagnostic and prognostic information of breast cancer potentially reducing the need for invasive (and often difficult to perform) biopsies and favouring an approach that is as personalised as possible for each patient. Nevertheless, such techniques will not substitute tissue biopsy in the near future, and even in further times they will require the aid of other parameters to be correctly interpreted and acted upon.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Olga Nigro
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Graziella Pinotti
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| |
Collapse
|
31
|
Ou X, Zhang J, Wang J, Pang F, Wang Y, Wei X, Ma X. Radiomics based on 18 F-FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine-learning approach: A preliminary study. Cancer Med 2019; 9:496-506. [PMID: 31769230 PMCID: PMC6970046 DOI: 10.1002/cam4.2711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Our study assessed the ability 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics to differentiate breast carcinoma from breast lymphoma using machine-learning approach. METHODS Sixty-five breast nodules from 44 patients diagnosed as breast carcinoma or breast lymphoma were included. Standardized uptake value (SUV) and radiomic features from CT and PET images were extracted using local image features extraction software. Six discriminative models including PETa (based on clinical, SUV and radiomic features from PET images), PETb (SUV and radiomic features from PET images), PETc (radiomic features only from PET images), CTa (clinical and radiomic features from CT images), CTb (radiomic features only from CT images), and SUV model were generated using least absolute shrinkage and selection operator method and linear discriminant analysis. The areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were calculated to evaluate the discriminative ability of these models. RESULTS PETa and CTa models showed the best ability to differentiation in training and validation group (AUCs of 0.867 and 0.806 for PETa model, AUCs of 0.891 and 0.759 for CTa model, respectively). CONCLUSION Models based on clinical, SUV, and radiomic features of 18 F-FDG PET/CT images could accurately discriminate breast carcinoma from breast lymphoma.
Collapse
Affiliation(s)
- Xuejin Ou
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China.,Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jian Wang
- School of Computer Science, Nanjing University of Science and Technology, Nanjing, PR China
| | - Fuwen Pang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yongsheng Wang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, PR China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|