1
|
de Paula Filho MFF, Lopes Chrisóstomo LL, Cansanção IF. HPV16 Genomes: In Silico Analysis of E6 and E7 Oncoproteins in 20 South American Variants. Curr Genomics 2024; 25:316-321. [PMID: 39156730 PMCID: PMC11327806 DOI: 10.2174/0113892029293113240427065916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 08/20/2024] Open
Abstract
Background Human papillomavirus (HPV) is the main risk factor for the development of squamous cell cervical cancer, and E6 oncoprotein and E7 oncoprotein are important components of the viral genome and its oncogenic potential. It is known that different viral variants of HPV16 have different pathology and impact on the development of neoplasia, although few studies have been performed on South American variants. Objective Therefore, the present study aimed to analyze in silico the genomic diversity of HPV16 in 20 complete genome variants of South America in the National Center for Biotechnology Information (NCBI) database. Methods We performed a descriptive study to characterize the polymorphic regions of the E6 and E7 genes in HPV16 variants, using software for genomic data and single nucleotide polymorphism (SNP) analysis and others for phylogenetic analysis. Results The variants analyzed included six SNPs linked to cancer (A131G, G145T, C335T, T350G, C712A, and T732C) and significant variation (798 nucleotide substitutions). Despite this, the variants showed low genetic diversity. Eighteen variants of unclear significance (VUS) were identified, 10 of which were in the coding E6 regions and 8 in the coding E7 regions. The prevalence of lineage D variants is of concern due to their pathology in cervical cancer and requires more research and epidemiological vigilance regarding their prevalence in the population. Conclusion The data obtained in this study may contribute to future research on South American variants of HPV16, their pathogenicity, and the development of treatments.
Collapse
Affiliation(s)
| | - Lara Luísa Lopes Chrisóstomo
- Medicine Collegiate, Campus Paulo Afonso, Universidade Federal do Vale do São Francisco (UNIVASF), Paulo Afonso, BA, 48605-780, Brazil
| | - Isaac Farias Cansanção
- Medicine Collegiate, Campus Paulo Afonso, Universidade Federal do Vale do São Francisco (UNIVASF), Paulo Afonso, BA, 48605-780, Brazil
| |
Collapse
|
2
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
3
|
Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q, Li L. Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne) 2023; 14:1234280. [PMID: 37529603 PMCID: PMC10390305 DOI: 10.3389/fendo.2023.1234280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
In the complex and dynamic processes of replication, transcription, and translation of DNA molecules, a large number of replication errors or damage can occur which lead to obstacles in the development process of germ cells and result in a decreased reproductive rate. DNA damage repair has attracted widespread attention due to its important role in the maintenance and regulation of germ cells. This study reports on a systematic review of the role and mechanism of DNA damage repair in germline development. First, the causes, detection methods, and repair methods of DNA damage, and the mechanism of DNA damage repair are summarized. Second, a summary of the causes of abnormal DNA damage repair in germ cells is introduced along with common examples, and the relevant effects of germ cell damage. Third, we introduce the application of drugs related to DNA damage repair in the treatment of reproductive diseases and related surgical treatment of abnormal DNA damage, and summarize various applications of DNA damage repair in germ cells. Finally, a summary and discussion is given of the current deficiencies in DNA damage repair during germ cell development and future research development. The purpose of this paper is to provide researchers engaged in relevant fields with a further systematic understanding of the relevant applications of DNA damage repair in germ cells and to gain inspiration from it to provide new research ideas for related fields.
Collapse
Affiliation(s)
- Yan Wang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Mengrong Su
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Qizhuang Lv
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Li Li
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| |
Collapse
|
4
|
Da Silva MLR, De Albuquerque BHDR, Allyrio TADMF, De Almeida VD, Cobucci RNDO, Bezerra FL, Andrade VS, Lanza DCF, De Azevedo JCV, De Araújo JMG, Fernandes JV. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 2021; 15:60. [PMID: 34094536 PMCID: PMC8165754 DOI: 10.3892/br.2021.1436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is associated with infection by certain types of human papillomaviruses (HPVs), and this affects women worldwide. Despite the improvements in prevention and cure of HPV-induced cervical cancer, it remains the second most common type of cancer in women in the least developed regions of the world. Epigenetic modifications are stable long-term changes that occur in the DNA, and are part of a natural evolutionary process of necessary adaptations to the environment. They do not result in changes in the DNA sequence, but do affect gene expression and genomic stability. Epigenetic changes are important in several biological processes. The effects of the environment on gene expression can contribute to the development of numerous diseases. Epigenetic modifications may serve a critical role in cancer cells, by silencing tumor suppressor genes, activating oncogenes, and exacerbating defects in DNA repair mechanisms. Although cervical cancer is directly related to a persistent high-risk HPV infection, several epigenetic changes have been identified in both the viral DNA and the genome of the infected cells: DNA methylation, histone modification and gene silencing by non-coding RNAs, which initiate and sustain epigenetic changes. In the present review, recent advances in the role of epigenetic changes in cervical cancer are summarized.
Collapse
Affiliation(s)
- Martha Laysla Ramos Da Silva
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | | | - Valéria Duarte De Almeida
- Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoro 59607-360, Brazil
| | | | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
5
|
Dong L, Zhang L, Hu SY, Feng RM, Zhao XL, Zhang Q, Pan QJ, Zhang X, Qiao YL, Zhao FH. Risk stratification of HPV 16 DNA methylation combined with E6 oncoprotein in cervical cancer screening: a 10-year prospective cohort study. Clin Epigenetics 2020; 12:62. [PMID: 32381054 PMCID: PMC7204324 DOI: 10.1186/s13148-020-00853-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background How to best triage human papillomavirus (HPV) positive women remains controversial in an era of HPV primary screening of cervical cancer. Here, we assessed the long-term risk stratification for triaging HPV 16 positive women by standalone HPV 16 methylation and combined with E6 oncoprotein. Methods A total of 1742 women underwent screening with HPV DNA testing, cytology, and visual inspection with acetic acid (VIA) in 2005 and were followed for 10 years. Seventy-seven women with HPV 16 positivity determined by HPV genotyping test were examined via E6 oncoprotein detection and bisulfite pyrosequencing for quantitative methylation of L1 and LCR genes of HPV 16. Results The 10-year cumulative incidence rate (CIR) of cervical intraepithelial neoplasia grade 3 or severe (CIN3+) for HPV 16 positive women was 25.3% (95% CI 14.7–37.3%), which significantly increased in women with high methylation at six sites (CpG 5602, 6650, 7034, 7461, 31, and 37) and in women with positive E6 oncoprotein. A methylation panel based on the above six sites showed a competitive risk stratification compared to cytology (HR 11.5 vs. 8.1), with a higher 10-year CIR of CIN3+ in panel positives (57.2% vs 36.8%) and comparable low risk in panel negatives (5.7% vs 4.8%).The sensitivity and specificity for accumulative CIN3+ was 85.7% (95%CI 60.1–96.0%) and 78.4% (95%CI 62.8–88.6%) for a methylation panel and 57.1% (95%CI 32.6–78.6%) and 86.5% (95%CI 72.0–94.1%) for E6 oncoprotein. The AUC values of methylation standalone and the co-testing of methylation panel and E6 oncoprotein were around 0.80, comparable to 0.68 for cytology, 0.65 for viral load, and superior to 0.52 for VIA (p < 0.05). Conclusions Our findings indicated the promising use of HPV 16 methylation alone or combined with E6 oncoprotein for triaging HPV 16 positive women based on the long-term risk stratification ability.
Collapse
Affiliation(s)
- Li Dong
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China.,Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Li Zhang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Shang-Ying Hu
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Rui-Mei Feng
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Xue-Lian Zhao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Qian Zhang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Qin-Jing Pan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Xun Zhang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - You-Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China
| | - Fang-Hui Zhao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, P.O. Box 2258, Beijing, 100021, China.
| |
Collapse
|
6
|
Fertey J, Hagmann J, Ruscheweyh HJ, Munk C, Kjaer S, Huson D, Haedicke-Jarboui J, Stubenrauch F, Iftner T. Methylation of CpG 5962 in L1 of the human papillomavirus 16 genome as a potential predictive marker for viral persistence: A prospective large cohort study using cervical swab samples. Cancer Med 2019; 9:1058-1068. [PMID: 31856411 PMCID: PMC6997067 DOI: 10.1002/cam4.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Several studies have demonstrated that the viral genome can be methylated by the host cell during progression from persistent infection to cervical cancer. The aim of this study was to investigate whether methylation at a specific site could predict the development of viral persistence and whether viral load shows a correlation with specific methylation patterns. HPV16‐positive samples from women aged 20–29 years (n = 99) with a follow‐up time of 13 years, were included from a Danish cohort comprising 11 088 women. Viral load was measured by real‐time PCR and methylation status was determined for 39 CpG sites in the upstream regulatory region (URR), E6/E7, and L1 region of HPV16 by next‐generation sequencing. Participants were divided into two groups according to whether they were persistently (≥ 24 months) or transiently HPV16 infected. The general methylation status was significantly different between women with a persistent and women with a transient infection outcome (P = .025). One site located in L1 (nt. 5962) was statistically significantly (P = .00048) different in the methylation status after correction using the Holm‐Sidak method (alpha = 0.05). Correlation analyses of samples from HPV16 persistently infected women suggest that methylation is higher although viral load is lower. This study indicates that methylation at position 5962 of the HPV16 genome within the L1 gene might be a predictive marker for the development of a persistent HPV16 infection.
Collapse
Affiliation(s)
- Jasmin Fertey
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | | | - Christian Munk
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne Kjaer
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel Huson
- Centre for Bioinformatics, Tuebingen University, Tuebingen, Germany
| | - Juliane Haedicke-Jarboui
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|