1
|
Liu C, Tang L, Yang W, Gu Y, Xu W, Liang Z, Jiang J. cGAS/STING pathway and gastrointestinal cancer: Mechanisms and diagnostic and therapeutic targets (Review). Oncol Rep 2025; 53:15. [PMID: 39611480 PMCID: PMC11632663 DOI: 10.3892/or.2024.8848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
The health of individuals is seriously threatened by intestinal cancer, which includes pancreatic, colorectal, esophageal, gastric and gallbladder cancer. Most gastrointestinal cancers do not have typical and specific early symptoms, and lack specific and effective diagnostic markers and treatment methods. It is critical to understand the etiology of gastrointestinal cancer and develop more efficient methods of diagnosis and treatment. The cyclic GMP‑AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway serves a crucial role in the occurrence, progression and treatment of gastrointestinal cancer. The present review focuses on the latest progress regarding the role and mechanism of the cGAS/STING pathway in gastrointestinal cancer, and discusses treatment approaches and related applications based on the cGAS/STING signaling pathway. In order to improve the knowledge of the connection between the cGAS/STING pathway and gastrointestinal cancer, aid the diagnosis and treatment of gastrointestinal cancer, and lessen the burden on patients and society, the present review also discusses future research directions and existing challenges regarding cGAS/STING in the study of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chang Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenhui Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuning Gu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
2
|
Wang B, Zhang F, Wu X, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Front Immunol 2024; 15:1433321. [PMID: 39161768 PMCID: PMC11330819 DOI: 10.3389/fimmu.2024.1433321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
TANK-binding kinase 1 (TBK1) is a member of the IKK family and plays a crucial role in the activation of non-canonical NF-κB signaling and type I interferon responses. The aberrant activation of TBK1 contributes to the proliferation and survival of various types of tumor cells, particularly in specific mutational or tumorous contexts. Inhibitors targeting TBK1 are under development and application in both in vivo and in vitro settings, yet their clinical efficacy remains limited. Numerous literatures have shown that TBK1 can exhibit both tumor promoting and tumor inhibiting effects. TBK1 acts as a pivotal node within the innate immune pathway, mediating anti-tumor immunity through the activation of innate immune responses. Facilitating interferon-I (IFN-I) production represents a critical mechanism through which TBK1 bridges these processes. IFN has been shown to exert both beneficial and detrimental effects on tumor progression. Hence, the paradoxical role of TBK1 in tumor development may necessitate acknowledgment in light of its downstream IFN-I signaling cascade. In this paper, we review the signaling pathways mediated by TBK1 in various tumor contexts and summarize the dual roles of TBK1 and the TBK1-IFN pathways in both promoting and inhibiting tumor progression. Additionally, we highlight the significance of the TBK1-IFN pathway in clinical therapy, particularly in the context of immune response. We anticipate further advancements in the development of TBK1 inhibitors as part of novel cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Pu Z, Liu J, Liu Z, Peng F, Zhu Y, Wang X, He J, Yi P, Hu X, Fan X, Chen J. STING pathway contributes to the prognosis of hepatocellular carcinoma and identification of prognostic gene signatures correlated to tumor microenvironment. Cancer Cell Int 2022; 22:314. [PMID: 36224658 PMCID: PMC9554977 DOI: 10.1186/s12935-022-02734-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant solid tumors worldwide. Recent evidence shows that the stimulator of interferon genes (STING) pathway is essential for anti-tumor immunity via inducing the production of downstream inflammatory cytokines. However, its impact on the prognosis and tumor microenvironment of HCC was still limited known. Methods We obtained gene expression profiles of HCC from GEO, TCGA, and ICGC databases, and immune-related genes (IRGs) from the ImmPort database. Multivariate Cox regression was performed to identify independent prognostic factors. Nomogram was established to predict survival probability for individual patients. Kaplan–Meier curve was used to evaluate the survival difference. Afterward, ESTIMATE, TISCH, and TIMER databases were combined to assess the immune cell infiltration. Furthermore, the qPCR, western blotting, and immunohistochemistry were done to evaluate gene expression, and in vitro cell models were built to determine cell migratory ability. Results We found that gene markers of NLRC3, STING1, TBK1, TRIM21, and XRCC6 within STING pathway were independent prognostic factors in HCC patients. Underlying the finding, a predictive nomogram was constructed in TCGA-training cohort and further validated in TCGA-all and ICGC datasets, showing credible performance. Experimentally, up-regulated TBK1 promotes the ability of HCC cell migration. Next, the survival-related immune-related co-expressed gene signatures (IRCGS) (VAV1, RHOA, and ZC3HAV1) were determined in HCC cohorts and their expression was verified in human HCC cells and clinical samples. Furthermore, survival-related IRCGS was associated with the infiltration of various immune cell subtypes in HCC, the transcriptional expression of prominent immune checkpoints, and immunotherapeutic response. Conclusion Collectively, we constructed a novel prognostic nomogram model for predicting the survival probability of individual HCC patients. Moreover, an immune-related prognostic gene signature was determined. Both might function as potential therapeutic targets for HCC treatment in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02734-4.
Collapse
Affiliation(s)
- Zhangya Pu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,Department of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Zelong Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Fang Peng
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 41800, Hunan Province, China
| | - Yuanyuan Zhu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 41800, Hunan Province, China
| | - Xiaofang Wang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China
| | - Jiayan He
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Panpan Yi
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China
| | - Xingwang Hu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.
| | - Xuegong Fan
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
5
|
Wang J, Xiao Y, Loupakis F, Stintzing S, Yang Y, Arai H, Battaglin F, Kawanishi N, Jayachandran P, Soni S, Zhang W, Mancao C, Cremolini C, Liu T, Heinemann V, Falcone A, Shen L, Millstein J, Lenz HJ. Genetic variants involved in the cGAS-STING pathway predict outcome in patients with metastatic colorectal cancer: Data from FIRE-3 and TRIBE trials. Eur J Cancer 2022; 172:22-30. [PMID: 35749909 DOI: 10.1016/j.ejca.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The activation of stimulator of interferon genes (STING) was reported to enhance cetuximab-mediated natural killer cell activation and dendritic cell maturation. Polymorphisms in genes in the cyclic GMP-AMP synthase (cGAS)-STING pathway may affect innate immune response. Therefore, we hypothesised that genetic variants in the cGAS-STING pathway may predict the efficacy of cetuximab-based treatment in patients with metastatic colorectal cancer. METHODS Genomic DNA from blood samples of patients enrolled in FIRE-3 (cetuximab arm, n = 129; bevacizumab arm, n = 107) and TRIBE (bevacizumab arm, n = 215) was genotyped using the OncoArray-500K bead chip panel. Seven selected single nucleotide polymorphisms in 3 genes (cGAS, STING and interferon B1 (IFNB1)) were analysed for the association with overall survival and progression-free survival. RESULTS In the cetuximab cohort, patients with STING rs1131769 any T allele showed significantly shorter overall survival (36.3 versus 56.1 months) than carriers of C/C in both univariate [hazard ratio (HR) = 2.08; 95% confidence interval (CI): 1.06-4.07; P = 0.03] and multivariate (HR = 2.98; 95% CI: 1.35-6.6; P = 0.0085) analyses; patients carrying IFNB1 rs1051922 G/A and A/A genotype showed a significantly shorter progression-free survival than carriers of G/G allele in both univariate (G/A versus G/G, 10.2 versus 14.1 months, HR = 1.84; 95% CI 1.23-2.76; A/A versus G/G, 10.7 versus 14.1 months, HR = 2.19; 95% CI 0.97-4.96; P = 0.0077) and multivariate analyses (G/A versus G/G, HR = 2; 95% CI 1.22-3.3; A/A versus G/G, HR = 2.19, 95% CI 0.92-5.26, P = 0.02). These associations were not observed in the bevacizumab arm of FIRE-3 or TRIBE. CONCLUSION These results suggest for the first time that germline polymorphisms in STING and IFNB1 genes may predict the outcomes of cetuximab-based treatment in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Department of Hematology, Oncology, and Cancer Immunology (CCM), Charité - Universitaetsmedizin Berlin, Germany
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc., Basel, Switzerland
| | | | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Translational Medicine, University of Pisa, Italy
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Liu Y, Kuai S, Ding M, Wang Z, Zhao L, Zhao P. Dexmedetomidine and Ketamine Attenuated Neuropathic Pain Related Behaviors via STING Pathway to Induce ER-Phagy. Front Synaptic Neurosci 2022; 14:891803. [PMID: 35645765 PMCID: PMC9136071 DOI: 10.3389/fnsyn.2022.891803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work indicated that ER-phagy level had altered in spinal nerve ligation (SNL) rats. In this study, we investigated whether dexmedetomidine or ketamine exhibits anti-anxiety or anti-nociceptive effects via modulation of the spinal STING/TBK pathway to alter ER-phagy in SNL rats. We evaluated the analgesic and anti-anxiety effects of ketamine and dexmedetomidine in SNL rats. 2’3’-cGAMP (a STING pathway agonist) was administrated to investigate whether enhanced spinal STING pathway activation could inhibit dexmedetomidine or ketamine treatment effects in SNL rats. Analgesic effects were assessed with the mechanical withdrawal threshold (MWT) and anti-anxiety effects were measured via an open field test (OFT). Protein expression levels were evaluated by immunoblotting. Distribution and cellular localization of Grp78 (ER stress marker) were evaluated by confocal immunofluorescence. SNL induced mechanical hypersensitivity and anxiety in rats; dexmedetomidine and ketamine both provided analgesia and anti-anxiety effects in SNL rats. Furthermore, the STING pathway was involved in the modulation of ER stress and ER-phagy in SNL rats and dexmedetomidine and ketamine alleviated ER stress by inhibiting STING pathway to enhance ER-phagy. Thus, both ketamine and dexmedetomidine provided anti-anxiety and anti-nociceptive effects by alleviating ER stress through the inhibition of the STING/TBK pathway to modulate spinal ER-phagy in SNL rats.
Collapse
Affiliation(s)
- Yongda Liu
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shihui Kuai
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengmeng Ding
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhibin Wang
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Limei Zhao Ping Zhao
| | - Ping Zhao
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Limei Zhao Ping Zhao
| |
Collapse
|
7
|
Ke X, Hu T, Jiang M. cGAS-STING signaling pathway in gastrointestinal inflammatory disease and cancers. FASEB J 2021; 36:e22029. [PMID: 34907606 DOI: 10.1096/fj.202101199r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a key DNA-sensing machinery in innate immunity. Activation of cGAS-STING signaling pathway mediates the production of interferons and proinflammatory cytokines. Although cGAS-STING signaling pathway shows critical function in the maintenance of gut homeostasis, overactive cGAS-STING signaling pathway leads to gastrointestinal (GI) inflammation. Harnessing the effect and mechanism of the cGAS-STING signaling pathway could be beneficial for the development of novel strategies for the treatment of GI diseases. This review presents recent advances regarding the role of cGAS-STING signaling pathway in GI inflammatory disease and cancers and describes perspective therapeutic strategies targeting the signaling pathway.
Collapse
Affiliation(s)
- Xinxin Ke
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mizu Jiang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
8
|
Hu X, Fatima S, Chen M, Xu K, Huang C, Gong RH, Su T, Wong HLX, Bian Z, Kwan HY. Toll-like receptor 4 is a master regulator for colorectal cancer growth under high-fat diet by programming cancer metabolism. Cell Death Dis 2021; 12:791. [PMID: 34385421 PMCID: PMC8360949 DOI: 10.1038/s41419-021-04076-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Although high-fat diet (HFD) has been implicated in the development of colorectal cancer (CRC), the critical signaling molecule that mediates the cancer growth is not well-defined. Identifying the master regulator that controls CRC growth under HFD can facilitate the development of effective therapeutics for the cancer treatment. In this study, the global lipidomics and RNA sequencing data show that, in the tumor tissues of CRC-bearing mouse models, HFD not only increases tumor weight, but also the palmitic acid level and TLR4 expression, which are reduced when HFD is replaced by control diet. These concomitant changes suggest the roles of palmitic acid and TLR4 in CRC growth. Subsequent studies show that palmitic acid regulates TLR4 expression in PU.1-dependent manner. Knockdown of PU.1 or mutations of PU.1-binding site on TLR4 promoter abolish the palmitic acid-increased TLR4 expression. The role of palmitic acid/PU.1/TLR4 axis in CRC growth is further examined in cell model and animal models that are fed either HFD or palmitic acid-rich diet. More importantly, iTRAQ proteomics data show that knockdown of TLR4 changes the metabolic enzyme profiles in the tumor tissues, which completely abolish the HFD-enhanced ATP production and cancer growth. Our data clearly demonstrate that TLR4 is a master regulator for CRC growth under HFD by programming cancer metabolism.
Collapse
Affiliation(s)
- Xianjing Hu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sarwat Fatima
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chunhua Huang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rui-Hong Gong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hoi Leong Xavier Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhaoxiang Bian
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
9
|
Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res 2021; 301:198440. [PMID: 33940002 DOI: 10.1016/j.virusres.2021.198440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
Globally, ovarian cancer is the seventh most common cancer and the eighth-most common cause of cancer death among women with a five-year survival rate of less than 45%. Although reovirus is known to be effective for treating ovarian cancer, some types of tumor cells still exhibit resistance to reovirus. In order to solve this resistance problem in the treatment of ovarian cancer, we selected the reovirus-resistant OV-90 ovarian cancer cells to study reovirus oncolytic effects. We found that the viability of OV-90 cells decreased after reovirus double-stranded RNA (dsRNA) genome transfection. Interestingly, we observed that chemical blockage of the Toll-like receptor 3 (TLR3)-dsRNA binding complex in OV-90 cells and the inhibition of downstream TLR3 signaling disrupted OV-90 apoptosis triggered by reovirus dsRNA. Together, these results demonstrate that reovirus dsRNA induces reovirus-resistant tumor cell apoptosis through the TLR3 signaling pathway.
Collapse
|
10
|
Manavalan R, Priya S. Genetic interactions effects for cancer disease identification using computational models: a review. Med Biol Eng Comput 2021; 59:733-758. [PMID: 33839998 DOI: 10.1007/s11517-021-02343-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) provide clear insight into understanding genetic variations and environmental influences responsible for various human diseases. Cancer identification through genetic interactions (epistasis) is one of the significant ongoing researches in GWAS. The growth of the cancer cell emerges from multi-locus as well as complex genetic interaction. It is impractical for the physician to detect cancer via manual examination of SNPs interaction. Due to its importance, several computational approaches have been modeled to infer epistasis effects. This article includes a comprehensive and multifaceted review of all relevant genetic studies published between 2001 and 2020. In this contemporary review, various computational methods are as follows: multifactor dimensionality reduction-based approaches, statistical strategies, machine learning, and optimization-based techniques are carefully reviewed and presented with their evaluation results. Moreover, these computational approaches' strengths and limitations are described. The issues behind the computational methods for identifying the cancer disease through genetic interactions and the various evaluation parameters used by researchers have been analyzed. This review is highly beneficial for researchers and medical professionals to learn techniques adapted to discover the epistasis and aids to design novel automatic epistasis detection systems with strong robustness and maximum efficiency to address the different research problems in finding practical solutions effectively.
Collapse
Affiliation(s)
- R Manavalan
- Department of Computer Science, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, 605602, India.
| | - S Priya
- Computer Science, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| |
Collapse
|
11
|
Wang SW, Su WH, Jia XM, Jiang HT, Huang BL, Dong WG. Role of cGAS-STING signaling pathway in colon cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:1084-1089. [DOI: 10.11569/wcjd.v28.i21.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway is an important immune response pathway in the cytoplasm, and it is an important mechanism that regulates innate immune and adaptive immune responses. As an important mechanism that detects and responds to pathogens, the cGAS-STING signaling pathway plays a key role in mediating immunity against DNA pathogens and the body's internal immunity against tumors. Clinically, STING activators are often used for tumor treatment. Also, cGAS can act as a tumor prognostic marker. At present, related agonists of cGAS and STING have been used in clinical treatment of colon cancer, but their effects in tumors from other tissues are not clear yet. Thus, their effectiveness and safety are still needed to be further studied.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430020, Hubei Province, China
| | - Wen-Hao Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430020, Hubei Province, China
| | - Xue-Mei Jia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430020, Hubei Province, China
| | - Hao-Tian Jiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430020, Hubei Province, China
| | - Bing-Lu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430020, Hubei Province, China
| | - Wei-Guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430020, Hubei Province, China
| |
Collapse
|
12
|
Catalano C, da Silva Filho MI, Frank C, Lu S, Jiraskova K, Vymetalkova V, Levy M, Liska V, Vycital O, Naccarati A, Vodickova L, Hemminki K, Vodicka P, Weber ANR, Försti A. Epistatic effect of TLR3 and cGAS-STING-IKKε-TBK1-IFN signaling variants on colorectal cancer risk. Cancer Med 2019; 9:1473-1484. [PMID: 31869529 PMCID: PMC7013077 DOI: 10.1002/cam4.2804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objective The TLR3/cGAS‐STING‐IFN signaling has recently been reported to be disturbed in colorectal cancer due to deregulated expression of the genes involved. Our study aimed to investigate the influence of potential regulatory variants in these genes on the risk of sporadic colorectal cancer (CRC) in a Czech cohort of 1424 CRC patients and 1114 healthy controls. Methods The variants in the TLR3, CGAS, TMEM173, IKBKE, and TBK1 genes were selected using various online bioinformatic tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, SIFT, PolyPhen2, and miRNA prediction tools. Results Logistic regression analysis adjusted for age and sex detected a nominal association between CRC risk and three variants, CGAS rs72960018 (OR: 1.68, 95% CI: 1.11‐2.53, P‐value = .01), CGAS rs9352000 (OR: 2.02, 95% CI: 1.07‐3.84, P‐value = .03) and TMEM173 rs13153461 (OR: 1.53, 95% CI: 1.03‐2.27, P‐value = .03). Their cumulative effect revealed a threefold increased CRC risk in carriers of 5‐6 risk alleles compared to those with 0‐2 risk alleles. Epistatic interactions between these genes and the previously genotyped IFNAR1, IFNAR2, IFNA, IFNB, IFNK, IFNW, IRF3, and IRF7 genes, were computed to test their effect on CRC risk. Overall, we obtained nine pair‐wise interactions within and between the CGAS, TMEM173, IKBKE, and TBK1 genes. Two of them remained statistically significant after Bonferroni correction. Additional 52 interactions were observed when IFN variants were added to the analysis. Conclusions Our data suggest that epistatic interactions and a high number of risk alleles may play an important role in CRC carcinogenesis, offering novel biological understanding for the CRC management.
Collapse
Affiliation(s)
- Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Christoph Frank
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shun Lu
- Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Miroslav Levy
- First Medical Faculty, Department of Surgery, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Vaclav Liska
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic.,Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
| | - Ondrej Vycital
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic.,Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Baden-Württemberg, Tübingen, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|