1
|
Kitai H, Ebi H. Oncogene alterations in non-small cell lung cancer with FGFR1 amplification-novel approach to stratify patients who benefit from FGFR inhibitors. Transl Lung Cancer Res 2024; 13:684-688. [PMID: 38601453 PMCID: PMC11002503 DOI: 10.21037/tlcr-23-777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Hidenori Kitai
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Alcazar O, Chuang ST, Ren G, Ogihara M, Webb-Robertson BJM, Nakayasu ES, Buchwald P, Abdulreda MH. A Composite Biomarker Signature of Type 1 Diabetes Risk Identified via Augmentation of Parallel Multi-Omics Data from a Small Cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579673. [PMID: 38405796 PMCID: PMC10888829 DOI: 10.1101/2024.02.09.579673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Biomarkers of early pathogenesis of type 1 diabetes (T1D) are crucial to enable effective prevention measures in at-risk populations before significant damage occurs to their insulin producing beta-cell mass. We recently introduced the concept of integrated parallel multi-omics and employed a novel data augmentation approach which identified promising candidate biomarkers from a small cohort of high-risk T1D subjects. We now validate selected biomarkers to generate a potential composite signature of T1D risk. Methods Twelve candidate biomarkers, which were identified in the augmented data and selected based on their fold-change relative to healthy controls and cross-reference to proteomics data previously obtained in the expansive TEDDY and DAISY cohorts, were measured in the original samples by ELISA. Results All 12 biomarkers had established connections with lipid/lipoprotein metabolism, immune function, inflammation, and diabetes, but only 7 were found to be markedly changed in the high-risk subjects compared to the healthy controls: ApoC1 and PON1 were reduced while CETP, CD36, FGFR1, IGHM, PCSK9, SOD1, and VCAM1 were elevated. Conclusions Results further highlight the promise of our data augmentation approach in unmasking important patterns and pathologically significant features in parallel multi-omics datasets obtained from small sample cohorts to facilitate the identification of promising candidate T1D biomarkers for downstream validation. They also support the potential utility of a composite biomarker signature of T1D risk characterized by the changes in the above markers.
Collapse
|
3
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Activation of CD44/PAK1/AKT signaling promotes resistance to FGFR1 inhibition in squamous-cell lung cancer. NPJ Precis Oncol 2022; 6:52. [PMID: 35853934 PMCID: PMC9296622 DOI: 10.1038/s41698-022-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Fibroblast growth factor receptor 1 (FGFR1) gene amplification is one of the most prominent and potentially targetable genetic alterations in squamous-cell lung cancer (SQCLC). Highly selective tyrosine kinase inhibitors have been developed to target FGFR1; however, resistance mechanisms originally existing in patients or acquired during treatment have so far led to limited treatment efficiency in clinical trials. In this study we performed a wide-scale phosphoproteomic mass-spectrometry analysis to explore signaling pathways that lead to resistance toward FGFR1 inhibition in lung cancer cells that display (i) intrinsic, (ii) pharmacologically induced and (iii) mutationally induced resistance. Additionally, we correlated AKT activation to CD44 expression in 175 lung cancer patient samples. We identified a CD44/PAK1/AKT signaling axis as a commonly occurring resistance mechanism to FGFR1 inhibition in lung cancer. Co-inhibition of AKT/FGFR1, CD44/FGFR1 or PAK1/FGFR1 sensitized ‘intrinsically resistant’ and ‘induced-resistant’ lung-cancer cells synergetically to FGFR1 inhibition. Furthermore, strong CD44 expression was significantly correlated with AKT activation in SQCLC patients. Collectively, our phosphoproteomic analysis of lung-cancer cells resistant to FGFR1 inhibitor provides a large data library of resistance-associated phosphorylation patterns and leads to the proposal of a common resistance pathway comprising CD44, PAK1 and AKT activation. Examination of CD44/PAK1/AKT activation could help to predict response to FGFR1 inhibition. Moreover, combination between AKT and FGFR1 inhibitors may pave the way for an effective therapy of patients with treatment-resistant FGFR1-dependent lung cancer.
Collapse
|
5
|
Regulation and Therapeutic Targeting of MTHFD2 and EZH2 in KRAS-Mutated Human Pulmonary Adenocarcinoma. Metabolites 2022; 12:metabo12070652. [PMID: 35888776 PMCID: PMC9324032 DOI: 10.3390/metabo12070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Activating KRAS mutations occur in about 30% of pulmonary adenocarcinoma (AC) cases and the discovery of specific inhibitors of G12C-mutated KRAS has considerably improved the prognosis for a subgroup of about 14% of non-small cell lung cancer (NSCLC) patients. However, even in patients with a KRAS G12C mutation, the overall response rate only reaches about 40% and mutations other than G12C still cannot be targeted. Despite the fact that one-carbon metabolism (1CM) and epigenetic regulation are known to be dysregulated by aberrant KRAS activity, we still lack evidence that co-treatment with drugs that regulate these factors might ameliorate response rates and patient prognosis. In this study, we show a direct dependency of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and Enhancer of Zeste Homolog 2 (EZH2) expression on mutationally activated KRAS and their prognostic relevance in KRAS-mutated AC. We show that aberrant KRAS activity generates a vulnerability of AC cancer cell lines to both MTHFD2 and EZH2 inhibitors. Importantly, co-inhibition of both factors was synergistically effective and comparable to KRASG12C inhibition alone, paving the way for their use in a therapeutic approach for NSCLC cancer patients.
Collapse
|
6
|
Moes-Sosnowska J, Chorostowska-Wynimko J. Fibroblast Growth Factor Receptor 1-4 Genetic Aberrations as Clinically Relevant Biomarkers in Squamous Cell Lung Cancer. Front Oncol 2022; 12:780650. [PMID: 35402233 PMCID: PMC8991910 DOI: 10.3389/fonc.2022.780650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors (FGFRis) are a potential therapeutic option for squamous non-small cell lung cancer (Sq-NSCLC). Because appropriate patient selection is needed for targeted therapy, molecular profiling is key to discovering candidate biomarker(s). Multiple FGFR aberrations are present in Sq-NSCLC tumors-alterations (mutations and fusions), amplification and mRNA/protein overexpression-but their predictive potential is unclear. Although FGFR1 amplification reliability was unsatisfactory, FGFR mRNA overexpression, mutations, and fusions are promising. However, currently their discriminatory power is insufficient, and the available clinical data are from small groups of Sq-NSCLC patients. Here, we focus on FGFR aberrations as predictive biomarkers for FGFR-targeting agents in Sq-NSCLC. Known and suggested molecular determinants of FGFRi resistance are also discussed.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
7
|
Chan JM, Quintanal-Villalonga Á, Gao VR, Xie Y, Allaj V, Chaudhary O, Masilionis I, Egger J, Chow A, Walle T, Mattar M, Yarlagadda DVK, Wang JL, Uddin F, Offin M, Ciampricotti M, Qeriqi B, Bahr A, de Stanchina E, Bhanot UK, Lai WV, Bott MJ, Jones DR, Ruiz A, Baine MK, Li Y, Rekhtman N, Poirier JT, Nawy T, Sen T, Mazutis L, Hollmann TJ, Pe'er D, Rudin CM. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 2021; 39:1479-1496.e18. [PMID: 34653364 PMCID: PMC8628860 DOI: 10.1016/j.ccell.2021.09.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.
Collapse
Affiliation(s)
- Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vianne Ran Gao
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Jacklynn Egger
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Walle
- Department of Medical Oncology; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig V K Yarlagadda
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - James L Wang
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Offin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Umesh K Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - W Victoria Lai
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arvin Ruiz
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10065, USA
| | - Tal Nawy
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Linas Mazutis
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
8
|
Maddali NK, Ivaturi VKV, Murthy Yellajyosula LN, Malkhed V, Brahman PK, Pindiprolu SKSS, Kondaparthi V, Nethinti SR. New 1,2,4‐Triazole Scaffolds as Anticancer Agents: Synthesis, Biological Evaluation and Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202101387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Narendra Kumar Maddali
- Department of Chemistry Koneru Lakshmaiah Education Foundation (KLEF), Green Fields Guntur Andhra Pradesh 522502 India
| | | | | | - Vasavi Malkhed
- Department of Chemistry University College of Science, Saifabad Osmania University Hyderabad Telangana 500004 India
- Molecular Modelling Research Laboratory Department of Chemistry Osmania University Hyderabad Telangana 500007 India
| | - Pradeep Kumar Brahman
- Department of Chemistry Koneru Lakshmaiah Education Foundation (KLEF), Green Fields Guntur Andhra Pradesh 522502 India
| | - Sai Kiran S. S. Pindiprolu
- Department of Pharmacology Aditya Pharmacy College Surampalem, East Godavari District Andhra Pradesh 533437 India
| | - Vani Kondaparthi
- Molecular Modelling Research Laboratory Department of Chemistry Osmania University Hyderabad Telangana 500007 India
| | - Sundara Rao Nethinti
- Department of Organic Chemistry Andhra University Visakhapatnam Andhra Pradesh 530003 India
| |
Collapse
|
9
|
Yao S, Peng L, Elakad O, Küffer S, Hinterthaner M, Danner BC, von Hammerstein-Equord A, Ströbel P, Bohnenberger H. One carbon metabolism in human lung cancer. Transl Lung Cancer Res 2021; 10:2523-2538. [PMID: 34295659 PMCID: PMC8264328 DOI: 10.21037/tlcr-20-1039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
Background Lung cancer remains the major cause of cancer related death worldwide. The discovery of targeted therapies against activating mutations in genes like EGFR considerably improved the prognosis for a subgroup of patients but still leaves a large part without a targeted therapy. One carbon metabolism (1CM) has been investigated in several cancer entities and its increased activity has been linked to higher tumor aggressiveness and reduced prognosis. In spite of 1CM enzymes role and correlation to cancer cells progression, comprehensive analysis for the diagnostic and functional role of the complete 1CM enzymes in lung cancer has not been conducted so far. Methods We investigated the prognostic and functional relevance of five major 1CM factors (MTHFD2, PGDH3, SHMT2, MTHFD1 and TYMS) in the three major subclasses of lung cancer [pulmonary adenocarcinoma (AC), squamous cell lung cancer (SQCLC) and small cell lung cancer (SCLC)]. We analyzed 1CM enzymes expression and clinicopathological correlation in patient derived tissue samples of 103 AC, 183 SQCLC and 37 SCLC patients by immunohistochemistry. Furthermore, the effect of 1CM enzymes expression on lung cancer cell proliferation and the response to chemotherapy was investigated in 15 representative AC, SQCLC and SCLC cell lines. Results Expression of MTHFD2 and PGDH3 was significantly correlated to a worse overall survival only in AC patients. Cell proliferation assays resolved that all 1CM enzymes have a significant impact on cell growth in AC cell lines and are partially involved in cell proliferation in SQCLC and SCLC cell lines. In addition, expression of MTHFD2 correlated significantly with an increased pemetrexed chemoresistance. Conclusions Expression of MTHFD2 significantly reduces the prognosis of AC patients. Furthermore, MTHFD2 expression is crucial for survival of AC cell lines and its expression correlates with resistance against Pemetrexed. As MTHFD2 is almost not expressed in healthy adult tissue, we therefore suggest that the inhibition of MTHFD2 might be a potential therapeutic strategy to surround pemetrexed resistance in AC.
Collapse
Affiliation(s)
- Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Luogen Peng
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C Danner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
10
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
11
|
Elakad O, Lois AM, Schmitz K, Yao S, Hugo S, Lukat L, Hinterthaner M, Danner BC, von Hammerstein-Equord A, Reuter-Jessen K, Schildhaus HU, Ströbel P, Bohnenberger H. Fibroblast growth factor receptor 1 gene amplification and protein expression in human lung cancer. Cancer Med 2020; 9:3574-3583. [PMID: 32207251 PMCID: PMC7288860 DOI: 10.1002/cam4.2994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeting fibroblast growth factor receptor 1 (FGFR1) is a potential treatment for squamous cell lung cancer (SQCLC). So far, treatment decision in clinical studies is based on gene amplification. However, only a minority of patients have shown durable response. Furthermore, former studies have revealed contrasting results regarding the impact of FGFR1 amplification and expression on patient's prognosis. AIMS Here, we analyzed prevalence and correlation of FGFR1 gene amplification and protein expression in human lung cancer and their impact on overall survival. MATERIALS & METHODS: FGFR1 gene amplification and protein expression were analyzed by fluorescence in situ hybridization and immunohistochemistry (IHC) in 208 SQCLC and 45 small cell lung cancers (SCLC). Furthermore, FGFR1 protein expression was analyzed in 121 pulmonary adenocarcinomas (ACs). Amplification and expression were correlated to each other, clinicopathological characteristics, and overall survival. RESULTS FGFR1 was amplified in 23% of SQCLC and 8% of SCLC. Amplification was correlated to males (P = .027) but not to overall survival. Specificity of immunostaining was verified by cellular CRISPR/Cas9 FGFR1 knockout. FGFR1 was strongly expressed in 9% of SQCLC, 35% of AC, and 4% of SCLC. Expression was correlated to females (P = .0187) and to the absence of lymph node metastasis in SQCLC (P = .018) with no significant correlation to overall survival. Interestingly, no significant correlation between amplification and expression was detected. DISCUSSION FGFR1 gene amplification does not seem to correlate to protein expression. CONCLUSION We believe that patient selection for FGFR1 inhibitors in clinical studies should be reconsidered. Neither FGFR1 amplification nor expression influences patient's prognosis.
Collapse
MESH Headings
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Female
- Gene Amplification
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Small Cell Lung Carcinoma/drug therapy
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
Collapse
Affiliation(s)
- Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Anna-Maria Lois
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C Danner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | | | | | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|