1
|
Lu H, Kong J, Cai S, Huang H, Luo J, Liu L. Hsa_circ_0096157 silencing suppresses autophagy and reduces cisplatin resistance in non-small cell lung cancer by weakening the Nrf2/ARE signaling pathway. Mol Biol Rep 2024; 51:703. [PMID: 38822881 DOI: 10.1007/s11033-024-09552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/15/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS A549 cells were treated with DDP (0 μg/mL or 3 μg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS DDP (3 μg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Huasong Lu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Jinliang Kong
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Shuangqi Cai
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Hong Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Jing Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Lihua Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
2
|
Styk J, Buglyó G, Pös O, Csók Á, Soltész B, Lukasz P, Repiská V, Nagy B, Szemes T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers (Basel) 2022; 14:3712. [PMID: 35954375 PMCID: PMC9367600 DOI: 10.3390/cancers14153712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignant neoplasm worldwide, with more than two million new cases diagnosed yearly. Despite increasing efforts in screening, many cases are still diagnosed at a late stage, when mortality is high. This paper briefly reviews known genetic causes of CRC (distinguishing between sporadic and familial forms) and discusses potential and confirmed nucleic acid biomarkers obtainable from liquid biopsies, classified by their molecular features, focusing on clinical relevance. We comment on advantageous aspects such as better patient compliance due to blood sampling being minimally invasive, the possibility to monitor mutation characteristics of sporadic and hereditary CRC in a disease showing genetic heterogeneity, and using up- or down-regulated circulating RNA markers to reveal metastasis or disease recurrence. Current difficulties and thoughts on some possible future directions are also discussed. We explore current evidence in the field pointing towards the introduction of personalized CRC management.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Ondrej Pös
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Peter Lukasz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Tomáš Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
3
|
Competing Endogenous RNAs" (ceRNAs) in Colorectal Cancer: a review article. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111759. [PMID: 34091180 DOI: 10.1016/j.biopha.2021.111759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most fatal and fourth most frequently diagnosed neoplasm in the world. Numerous non-coding RNAs have been shown to contribute in the development of CRC. MicroRNAs (miRNAs) are among the mostly assessed non-coding RNAs in CRC. These transcripts influence expression and activity of TGF-β, Wnt/β-catenin, MAPK, PI3K/AKT and other CRC-related pathways. In the context of CRC, miRNAs interact with long non-coding RNAs to influence CRC course. Stool and serum levels of miRNAs have been used to distinguish CRC patients from healthy controls, indicating diagnostic roles of these transcripts in CRC. Therapeutic application of miRNAs in CRC has been assessed in animal models, yet has not been verified in clinical settings. In the current review, we have provided a recent update on the role of miRNAs in CRC development as well as diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Fu K, Li Y, Song J, Cai W, Wu W, Ye X, Xu J. Identification of a MicroRNA Signature Associated With Lymph Node Metastasis in Endometrial Endometrioid Cancer. Front Genet 2021; 12:650102. [PMID: 33936173 PMCID: PMC8082502 DOI: 10.3389/fgene.2021.650102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor in endometrial cancer. Anomalous microRNAs (miRNAs) are associated with cell functions and are becoming a powerful tool to characterize malignant transformation and metastasis. The aim of this study was to construct a miRNA signature to predict LNM in endometrial endometrioid carcinoma (EEC). Method Candidate target miRNAs related to LNM in EEC were screened by three methods including differentially expressed miRNAs (DEmiRs), weighted gene co-expression network analysis (WGCNA), and decision tree algorithms. Samples were randomly divided into the training and validation cohorts. A miRNA signature was built using a logistic regression model and was evaluated by the area under the curve (AUC) of receiver operating characteristic curve (ROC) and decision curve analysis (DCA). We also conducted pathway enrichment analysis and miRNA-gene regulatory network to look for potential genes and pathways engaged in LNM progression. Survival analysis was performed, and the miRNAs were tested whether they expressed differently in another independent GEO database. Result Thirty-one candidate miRNAs were screened and a final 15-miRNA signature was constructed by logistic regression. The model showed good calibration in the training and validation cohorts, with AUC of 0.824 (95% CI, 0.739-0.912) and 0.821 (95% CI, 0.691-0.925), respectively. The DCA demonstrated the miRNA signature was clinically useful. Hub miRNAs in signature seemed to contribute to EEC progression via mitotic cell cycle, cellular protein modification process, and molecular function. MiR-34c was statistically significant in survival that a higher expression of miR-34c indicated a higher survival time. MiR-34c-3p, miR-34c-5p, and miR-34b-5p were expressed differentially in GSE75968. Conclusion The miRNA signature could work as a noninvasive method to detect LNM in EEC with a high prediction accuracy. In addition, miR-34c cluster may be a key biomarker referring LNM in endometrial cancer.
Collapse
Affiliation(s)
- Kaiyou Fu
- School of Medicine, Zhejiang University, Hangzhou, China.,Women's hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanrui Li
- School of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jianyuan Song
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangyu Cai
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohang Ye
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Dong S, Wu C, Song C, Qi B, Liu L, Xu Y. Identification of Primary and Metastatic Lung Cancer-Related lncRNAs and Potential Targeted Drugs Based on ceRNA Network. Front Oncol 2021; 10:628930. [PMID: 33614509 PMCID: PMC7886985 DOI: 10.3389/fonc.2020.628930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer metastasis is the leading cause of poor prognosis and death for patients. Long noncoding RNAs (lncRNAs) have been validated the close correlation with lung cancer metastasis, but few comprehensive analyses have reported the specific association between lncRNA and cancer metastasis, especially via both competing endogenous RNA (ceRNA) regulatory relationships and functional regulatory networks. Here, we constructed primary and metastatic ceRNA networks, identified 12 and 3 candidate lncRNAs for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) respectively and excavated some drugs that might have potential therapeutic effects on lung cancer progression. In summary, this study systematically analyzed the competitive relationships and regulatory mechanism of the repeatedly dysregulated lncRNAs in lung cancer carcinogenesis and metastasis, and provided a new idea for screening potential therapeutic drugs for lung cancer.
Collapse
Affiliation(s)
- Siyao Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Cheng Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chengyan Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Baocui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Zhu M, Luo Y, Xu A, Xu X, Zhong M, Ran Z. Long noncoding RNA TCONS_00026334 is involved in suppressing the progression of colorectal cancer by regulating miR-548n/TP53INP1 signaling pathway. Cancer Med 2020; 9:8639-8649. [PMID: 32986920 PMCID: PMC7666722 DOI: 10.1002/cam4.3473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) were recognized as significant therapeutic targets in tumors. Our previous microarray analysis showed that lncRNA TCONS_000026334 expression was reduced in metastatic colorectal cancer (CRC) tissues. The objective of this study was to research the biological functions of TCONS_000026334 and the potential mechanism during the development of CRC. TCONS_00026334 transcription levels were detected in CRC tissues from 86 patients and different CRC cell lines. The clinical prognosis factors related to TCONS_00026334 expression were then analyzed. TCONS_000026334 was overexpressed from plasmid pcDNA3.1‐TCONS_ 000026334 or knocked down using a small interfering RNA (siRNA). Furthermore, bioinformatics approach and luciferase reporter gene assays were utilized to search for candidate miRNAs of TCONS_00026334 and identify the downstream target genes. The results indicated that TCONS_00026334 expression in 86 CRC tissues was markedly lower than that in non‐cancerous tissues. The aberrant expression of TCONS_00026334 correlated negatively with larger tumor size, distant metastasis, serological carcinoembryonic antigen level, and unfavorable survival of patients with CRC. TCONS_00026334 overexpression could inhibit the aggressive phenotypes of CRC in vitro and in vivo. Conversely, TCONS_00026334 silencing accelerated CRC cell proliferation and invasion. We then verified that TCONS_00026334 upregulated the expression level of TP53INP1, a target gene of miR‐548n, via direct binding to miR‐548n as a competing endogenous RNA. Taken together, our study showed that TCONS_00026334 acts as an anti‐tumor and anti‐metastatic gene by regulating the miR548n/TP53INP1 axis in the development of CRC.
Collapse
Affiliation(s)
- Mingming Zhu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Antao Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xitao Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|