1
|
Hedayati N, Mafi A, Farahani A, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A, Farahani N. The importance of the circRNA/Wnt axis in gliomas: Biological functions and clinical opportunities. Pathol Res Pract 2024; 261:155510. [PMID: 39116573 DOI: 10.1016/j.prp.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/β-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
3
|
Shao Y, Yang Z, Miao W, Yu X, Pu Y. Circ_0005015 upregulates BACH1 to promote aggressive behaviors in glioblastoma by sponging microRNA-382-5p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4139-4151. [PMID: 38032493 DOI: 10.1007/s00210-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
To investigate the potential role and molecular mechanism of circ_0005015 in GBM progression. Circ_0005015, microRNA-382-5p (miR-382-5p), and BTB domain and CNC homolog 1 (BACH1) levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was determined by MTT, colony formation, and EdU assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were assessed using wound healing and transwell assays. Glucose accumulation and lactate levels were examined by the corresponding kit. RNA pull-down and dual-luciferase reporter assays were performed to confirm the interaction between miR-382-5p and circ_0005015 or BACH1. Protein levels of MMP9, PCNA, and BACH1 were examined using western blot assay. Role of circ_0005015 on tumor growth in vivo was analyzed using a xenograft tumor model. Circ_0005015 content was up-regulated in GBM patients and cells, its knockdown restrained GBM cell proliferation, migration, invasion, glycolysis, and triggered apoptosis. Mechanistically, we found that circ_0005015 could directly interact with miR-382-5p and serve as a miRNA sponge to regulate BACH1 expression. In addition, circ_0005015 knockdown might repress tumor growth in vivo. Circ_0005015 boosted GBM progression via binding to miR-382-5p to up-regulate BACH1, which may offer new effective targets for GBM treatment.
Collapse
Affiliation(s)
- Yun Shao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhengxiang Yang
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Weifeng Miao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Xiangrong Yu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yi Pu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
4
|
Zhang Y, Zhu Y, Zhang Y, Liu Z, Zhao X. YTHDF1 promotes the viability and self‑renewal of glioma stem cells by enhancing LINC00900 stability. Int J Oncol 2024; 64:53. [PMID: 38551160 PMCID: PMC11015915 DOI: 10.3892/ijo.2024.5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
YTHDF1, an N6‑methyladenosine (m6A)‑binding protein, is significantly upregulated in glioma tissues. The present study investigated the molecular mechanism underlying the regulatory effects of YTHDF1 on the viability, invasion and self‑renewal of glioma stem cells (GSCs). Glioma and normal brain tissues were collected, and reverse transcription‑quantitative PCR and western blotting were used to measure the gene and protein expression levels, respectively. Methylated RNA immunoprecipitation‑PCR was used to assess the m6A modification level of the target gene. Subsequently GSCs were induced, and YTHDF1 and LINC00900 gene regulation was carried out using lentiviral infection. The viability, invasion and self‑renewal of GSCs were assessed by Cell Counting Kit‑8, Transwell and sphere formation assays, respectively. Binding between YTHDF1 and LINC00900 was verified by RNA immunoprecipitation and RNA pull‑down assays. The targeted binding of microRNA (miR)‑1205 to the LINC00900/STAT3 3'‑UTR was verified using a luciferase reporter assay. The results revealed that YTHDF1 and LINC00900 expression levels were significantly upregulated in glioma tissues, and a high m6A modification level in LINC00900 transcripts was detected in glioma tissues. Overexpression of YTHDF1 promoted GSC viability, invasion and self‑renewal, whereas knockdown of YTHDF1 had the opposite effects. In addition, YTHDF1 maintained the stability of LINC00900 and upregulated its expression through binding to it, thereby promoting GSC viability, invasion and self‑renewal. Furthermore, LINC00900 promoted GSC viability, invasion, self‑renewal and tumor growth by regulating the miR‑1205/STAT3 axis. In conclusion, YTHDF1 promotes GSC viability and self‑renewal by regulating the LINC00900/miR‑1205/STAT3 axis.
Collapse
Affiliation(s)
- Yuanhai Zhang
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Yi Zhu
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
| | - Zixiang Liu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214002, P.R. China
| | - Xudong Zhao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214002, P.R. China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
5
|
Zhang X, Ma L, Wan L, Wang H, Wang Z. Circ_0003945: an emerging biomarker and therapeutic target for human diseases. Front Oncol 2024; 14:1275009. [PMID: 38711855 PMCID: PMC11070578 DOI: 10.3389/fonc.2024.1275009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Due to the rapid development of RNA sequencing techniques, a circular non-coding RNA (ncRNA) known as circular RNAs (circRNAs) has gradually come into focus. As a distinguished member of the circRNA family, circ_0003945 has garnered attention for its aberrant expression and biochemical functions in human diseases. Subsequent studies have revealed that circ_0003945 could regulate tumor cells proliferation, migration, invasion, apoptosis, autophagy, angiogenesis, drug resistance, and radio resistance through the molecular mechanism of competitive endogenous RNA (ceRNA) during tumorigenesis. The expression of circ_0003945 is frequently associated with some clinical parameters and implies a poorer prognosis in the majority of cancers. In non-malignant conditions, circ_0003945 also holds considerable importance in diseases pathogenesis. This review aims to recapitulate molecular mechanism of circ_0003945 and elucidates its potential as a diagnostic and therapeutic target in neoplasms and other diseases.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Wan
- Department of Oncology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Haoran Wang
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Xu C, Jun E, Okugawa Y, Toiyama Y, Borazanci E, Bolton J, Taketomi A, Kim SC, Shang D, Von Hoff D, Zhang G, Goel A. A Circulating Panel of circRNA Biomarkers for the Noninvasive and Early Detection of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:178-190.e16. [PMID: 37839499 PMCID: PMC10843014 DOI: 10.1053/j.gastro.2023.09.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies. Delayed manifestation of symptoms and lack of specific diagnostic markers lead patients being diagnosed with PDAC at advanced stages. This study aimed to develop a circular RNA (circRNA)-based biomarker panel to facilitate noninvasive and early detection of PDAC. METHODS A systematic genome-wide discovery of circRNAs overexpressed in patients with PDAC was conducted. Subsequently, validation of the candidate markers in the primary tumors from patients with PDAC was performed, followed by their translation into a plasma-based liquid biopsy assay by analyzing 2 independent clinical cohorts of patients with PDAC and nondisease controls. The performance of the circRNA panel was assessed in conjunction with the plasma levels of cancer antigen 19-9 for the early detection of PDAC. RESULTS Initially, a panel of 10 circRNA candidates was identified during the discovery phase. Subsequently, the panel was reduced to 5 circRNAs in the liquid biopsy-based assay, which robustly identified patients with PDAC and distinguished between early-stage (stage I/II) and late-stage (stage III/IV) disease. The areas under the curve of this diagnostic panel for the detection of early-stage PDAC were 0.83 and 0.81 in the training and validation cohorts, respectively. Moreover, when this panel was combined with cancer antigen 19-9 levels, the diagnostic performance for identifying patients with PDAC improved remarkably (area under the curve, 0.94) for patients in the validation cohort. Furthermore, the circRNA panel could also efficiently identify patients with PDAC (area under the curve, 0.85) who were otherwise deemed clinically cancer antigen 19-9-negative (<37 U/mL). CONCLUSIONS A circRNA-based biomarker panel with a robust noninvasive diagnostic potential for identifying patients with early-stage PDAC was developed.
Collapse
Affiliation(s)
- Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Eunsung Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu City, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu City, Mie, Japan
| | | | - John Bolton
- Department of Surgery, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California; City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
7
|
Ma W, Gao Y, Yao X, Zhang J, Jia L, Wang D, Lin L, Bi LJ, Xu Q. Circ_UBAP2 exacerbates proliferation and metastasis of OS via targeting miR-665/miR-370-3p/HMGA1 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:212-227. [PMID: 37676907 DOI: 10.1002/tox.23964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Circ_UBAP2 is extensively engaged in regulating the development of various malignancies, containing osteosarcoma (OS). However, its biological significance and function are not fully understood. In this study, we found that circ_UBAP2 and HMGA1 levels were up-regulated, and miR-370-3p and miR-665 expressions were decreased in osteosarcoma tissues. Inhibition of circ_UBAP2 or HMGA1 expression in OS cells, cell viability, invasion and migration abilitities were notably hindered, and cell apoptosis abilities were increased. Bioinformatics analysis predicted that miR-665 and miR-370-3p were the downstream targets of circ_UBAP2, and the dual luciferase experiment demonstrated the correlation between them. In addition, inhibition of miR-665 and miR-370-3p expression could significantly reverse the impact of knocking down circ_UBAP2 on OS cells. HMGA1 was discovered to become the downstream target of both miR-665 and miR-370-3p. It was shown that over-expression of miR-665 or miR-370-3p notably stimulated the cell growth, invasion, and migration of osteosarcoma cells, while hindered cell apoptosis. Nevertheless, this effect could be reversed by concurrent over-expression of HMGA1. Our data strongly prove that circ_UBAP2 makes a vital impact on promoting the proliferation, invasion as well as migration of osteosarcoma cells via down-regulating the level of miR-665 and miR-370-3p, and later up-regulating the level of HMGA1. In conclusion, circ_UBAP2 is upregulated in osteosarcoma, and it competitively adsorbs miR-370-3p and miR-665, resulting in up-regulation of HMGA1, thus promoting OS development.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Junhua Zhang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lina Jia
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dan Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lin Lin
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Li-Jun Bi
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingxia Xu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
9
|
Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, Ong HT, Chiou SH, Choo KB. Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer. BMC Cancer 2023; 23:1088. [PMID: 37950151 PMCID: PMC10636831 DOI: 10.1186/s12885-023-11571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
Collapse
Affiliation(s)
- Vimalan Rengganaten
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Postgraduate Program, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, 11221, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hooi Tin Ong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
| | - Kong Bung Choo
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
10
|
Zhou X, Zhao Q, Xiao M. Hsa_circ_0137652 Regulates miR-1205/CCNB1 Axis to Accelerate the Malignancy of Breast Cancer. Mol Biotechnol 2023; 65:1824-1835. [PMID: 36807271 DOI: 10.1007/s12033-023-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023]
Abstract
CircRNAs have become a hotspot in tumor research owing to their high stability and specific functions. We investigated the function of hsa_circ_0137652 in the onset and progression of breast cancer (BC). The expression of circ_0137652, miR-1205, and CCNB1 in BC tissues and cell lines were detected using RT-qPCR and/or western blotting. Dual-luciferase reporter and RNA immunoprecipitation chip assays were used to confirm any potential connections between circ_0137652, miR-1205, and CCNB1. CCK-8 and clone formation assays (CFA) were used to measure the proliferation of BC cells. The Transwell assay was used to investigate the migration of BC cells, and the impact of circ_0137652 on BC tumor formation in vivo was validated using animal experiments. RT-qPCR results showed that circ_0137652 and CCNB1 in breast cancer tissues were notably upregulated in normal tissues, whereas miR-1205 was prominently downregulated. After silencing circ_0137652, the growth and migration of BC cells were reduced. Animal experiments showed that circ_0137652 hampers the tumorigenesis of BC cells in vivo. Additionally, we found that circ_0137652 functions as a sponge for miR-1205. Moreover, the miR-1205 inhibitor notably facilitated cell proliferation and migration and attenuated the action of circ_0137652 knockdown. Furthermore, miR-1205 inhibits BC progression by targeting CCNB1. Circ_0137652 controls the miR-1205/CCNB1 axis to induce increased breast cancer malignancy. Our findings suggest that circ_0137652 may be a novel target for BC therapy.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Thyroid and Breast Surgery, Wuhan Red Cross Hospital, No. 392, Hong Kong Road, Jianghan District, Wuhan, 430015, Hubei, China
| | - Qiang Zhao
- Department of Rehabilitation Medicine, Wuhan Hankou Hospital, Wuhan, 430012, Hubei, China
| | - Min Xiao
- Department of Thyroid and Breast Surgery, Wuhan Red Cross Hospital, No. 392, Hong Kong Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
11
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
12
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
13
|
Yu LL, Xiao Q, Yu B, Lv QL, Liu ZQ, Yin JY. CircRNAs in tumor immunity and immunotherapy: Perspectives from innate and adaptive immunity. Cancer Lett 2023; 564:216219. [PMID: 37146937 DOI: 10.1016/j.canlet.2023.216219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Tumor immunotherapy is a new therapeutic approach that has been evolving in the last decade and has dramatically changed the treatment options for cancer. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) with high stability, tissue-specific and cell-specific expression. There is growing evidence that circRNAs are involved in the regulation of both adaptive and innate immunity. They play important roles in tumor immunotherapy by affecting macrophage, NK and T cell function. The high stability and tissue specificity make them ideal candidate biomarkers for therapeutic effects. CircRNAs also represent one of promising targets or adjuvant for immunotherapy. Investigations in this field progress rapidly and provide essential support for the diagnosis, prognosis and treatment guidance of cancers in the future. In this review, we summarize the role of circRNAs on tumor immunity from the viewpoint of innate and adaptive immunity, and explore the role of circRNAs in tumor immunotherapy.
Collapse
Affiliation(s)
- Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Bing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, PR China; National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
14
|
Huang Y, Qian M, Chu J, Chen L, Jian W, Wang G. Identification of circRNA-miRNA-mRNA network in luminal breast cancers by integrated analysis of microarray datasets. Front Mol Biosci 2023; 10:1162259. [PMID: 37187897 PMCID: PMC10175596 DOI: 10.3389/fmolb.2023.1162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: Circular RNAs (circRNAs) regulatory network is important in human cancer. We, therefore, mapped the regulatory networks driven by circRNA in luminal-subtype breast cancer. Methods: Breast cancer-related microarray datasets from GEO database were analyzed for the differentially expressed circRNAs, miRNAs, and mRNAs. The potential downstream RNAs were collected using Circular RNA Interactome or Targetscan database. Protein-protein interaction (PPI) analysis was performed for the filtered genes to identify hub genes. The functions were annotated by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. CircRNA-miRNA-mRNA networks were mapped using Cytoscape software. Hsa_circ_0086735-miR-1296-5p-STAT1 axis was used for verification. The expression levels of hsa_circ_0086735, miR-1296-5p, and STAT1 mRNA were confirmed by qRT-PCR in luminal-subtype tissues and cell lines. The interactions among them were verified by Luciferase reporter assay and RNA pull-down assay. Cell proliferation and apoptosis were assayed. Overall and distant metastasis-free survival was analyzed. Results: A total of 70 genes were finally targeted and enriched in multi-process and multi-pathway. Networks containing 96 circRNA-miRNA-mRNA axes were constructed. Hsa_circ_0086735 and STAT1 mRNA was upregulated in luminal breast cancer, while miR-1296-5p was downregulated. Hsa_circ_0086735-miR-1296-5p-STAT1 axis promotes breast cancer progression and contributes to tamoxifen resistance. High hsa_circ_0086735 was associated with poor overall and distant metastasis-free survival. Discussion: This study identified the hsa_circ_0086735-miR-1296-5p-STAT1 as an important regulatory axis in luminal-subtype breast cancer, aiding to determine potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Su H, Yang Y, Lv W, Li X, Zhao B. Bone marrow mesenchymal stem cell-derived exosomal microRNA-382 promotes osteogenesis in osteoblast via regulation of SLIT2. J Orthop Surg Res 2023; 18:185. [PMID: 36894950 PMCID: PMC9999516 DOI: 10.1186/s13018-023-03667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic skeletal disorder with increased bone fragility. Human bone marrow mesenchymal stem cells (hBMSCs) have multi-lineage differentiation ability, which may play important roles in osteoporosis. In this study, we aim to investigate the role of hBMSC-derived miR-382 in osteogenic differentiation. METHODS The miRNA and mRNA expressions in peripheral blood monocytes between persons with high or low bone mineral density (BMD) were compared. Then we collected the hBMSC-secreted sEV and examined the dominant components. The over-expression of the miR-382 in MG63 cell and its progression of osteogenic differentiation were investigated by qRT-PCR, western blot and alizarin red staining. The interaction between miR-382 and SLIT2 was confirmed by dual-luciferase assay. The role of SLIT2 was also confirmed through up-regulation in MG63 cell, and the osteogenic differentiation-associated gene and protein were tested. RESULTS According to bioinformatic analysis, a series of differential expressed genes between persons with high or low BMD were compared. After internalization of hBMSC-sEV in MG63 cells, we observed that the ability of osteogenic differentiation was significantly enhanced. Similarly, after up-regulation of miR-382 in MG63 cells, osteogenic differentiation was also promoted. According to the dual-luciferase assay, the targeting function of miR-382 in SLIT2 was demonstrated. Moreover, the benefits of hBMSC-sEV in osteogenesis were abrogated through up-regulation of SLIT2. CONCLUSION Our study provided evidence that miR-382-contained hBMSC-sEV held great promise in osteogenic differentiation in MG63 cells after internalization by targeting SLIT2, which can be served as molecular targets to develop effective therapy.
Collapse
Affiliation(s)
- Hairong Su
- Maoming People's Hospital, 101 Weimin Road, Maonan District, Maoming City, 525000, Guandong, China
| | - Yulan Yang
- Maoming People's Hospital, 101 Weimin Road, Maonan District, Maoming City, 525000, Guandong, China
| | - Wanchun Lv
- Maoming People's Hospital, 101 Weimin Road, Maonan District, Maoming City, 525000, Guandong, China
| | - Xiaoli Li
- Maoming People's Hospital, 101 Weimin Road, Maonan District, Maoming City, 525000, Guandong, China
| | - Binxiu Zhao
- Maoming People's Hospital, 101 Weimin Road, Maonan District, Maoming City, 525000, Guandong, China.
| |
Collapse
|
16
|
Roles of circular RNAs in regulating the development of glioma. J Cancer Res Clin Oncol 2023; 149:979-993. [PMID: 35776196 DOI: 10.1007/s00432-022-04136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioma is the most common malignant tumor in the central nervous system. In patients with glioma, the prognosis is poor and median survival is only 12-15 months. With the recent development of sequencing technology, important roles of noncoding RNAs are being discovered in cells, especially those of circular RNAs (circRNAs). Because circRNAs are stable, abundant, and highly conserved, they are regarded as novel biomarkers in the early diagnosis and prognosis of diseases. PURPOSE In this review, roles and mechanisms of circRNAs in the development of glioma are summarized. METHODS This paper collects and reviews relevant PubMed literature. CONCLUSION Several classes of circRNAs are highly expressed in glioma and are associated with malignant biological behaviors of gliomas, including proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. Further studies are needed to clarify the roles of circRNAs in glioma and to determine whether it is possible to increase therapeutic effects on tumors through circRNA intervention.
Collapse
|
17
|
Wang H, Liu S, Sha X, Gao X, Liu G, Jiang X. Unveiling the prominent roles of circular RNAs ubiquitin binding associated protein 2 in cancers. Pathol Res Pract 2023; 241:154282. [PMID: 36580797 DOI: 10.1016/j.prp.2022.154282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs), a novel type of covalently closed non-coding RNAs, are widely expressed in eukaryotes and viruses. Accumulating evidence has shown that circRNAs play key roles in the pathophysiological changes process of human diseases and can affect cancer development and progression through regulating target genes expression, linear RNA transcription and protein generation. Recent studies had found that circRNA-UBAP2 (ubiquitin binding associated protein 2) was aberrantly expressed in various human tumors and could affect tumor cells proliferation, migration, invasion, cell cycle, anti-apoptosis, radioresistance, chemoresistance and other malignant biological behavioral progress. Mechanistic studies further revealed that circUBAP2 could affect the occurrence and development of human tumors through multiple different molecular regulatory pathways in vivo and in vitro. In addition, the abnormal expression of circUBAP2 was significantly correlated with the clinicopathological characteristics of malignant tumors and had potential value as biomarkers for the diagnosis and prognosis evaluation of cancer patients, which deserved further study. This review had summarized and discussed the oncogenic roles and clinical performances of circUBAP2 in various human malignancies with a focus on biological functions and molecular mechanisms, which could help to elevate the understanding to the roles of circRNAs and continue subsequent studies on circUBAP2.
Collapse
Affiliation(s)
- Haicun Wang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Sidi Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xiangjun Sha
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xin Gao
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Guanglin Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China.
| |
Collapse
|
18
|
Deng L, Gong K, Wang G. Hsa_circ_0008344 Promotes Glioma Tumor Progression and Angiogenesis Presumably by Regulating miR-638/SZRD1 Pathway. Neurotox Res 2022; 40:825-836. [PMID: 35394558 DOI: 10.1007/s12640-022-00504-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Hsa_circRNA_0008344 (circ_0008344) is a new glioma-related circular RNA. Our study aims to explore its functions in glioma tumor progression. Real-time quantitative PCR and western blotting were used to detect RNA and protein abundances. RNase R assay, actinomycin D assay, and subcellular fractionation method were performed to identify the features of circ_0008344. Cell-counting kit-8, 5-ethynyl-2'-deoxyuridine assays, transwell assays, tube formation assay, flow cytometry, and nude mice xenograft tumor model were performed. Target relationship was predicted by bioinformatics algorithms and confirmed by dual-luciferase reporter assay. Abundances of circ_0008344 and SUZ RNA binding domain containing 1 (SZRD1) were highly elevated, while miR-638 was downregulated in glioma tumors and cells. Circ_0008344 was identified as a stable circRNA with a circular structure. Silencing circ_0008344 could restrain glioma proliferation, migration, invasion, and angiogenesis. Circ_0008344 functioned as a sponge for miR-638. The negative regulation of circ_0008344 knockdown on glioma progression and angiogenesis could be reversed by miR-638 inhibitor. SZRD1 was a target of miR-318, and its overexpression overturned the inhibition effect of miR-638 mimic on glioma progression and angiogenesis. Meanwhile, we confirmed that circ_0008344 knockdown inhibited SZRD1 expression, and its effect was reversed by miR-638 inhibitor. Also, circ_00008344 knockdown suppressed glioma tumor growth. Circ_0008344 might contribute to glioma progression through miR-638/SZRD1 axis, which might be a novel pathology and treatment target in glioma.
Collapse
Affiliation(s)
- Liyong Deng
- Department of Oncology, Changsha Central Hospital, No. 161, Shaoshan South Road, Changsha, Hunan, China
| | - Kuiyu Gong
- Department of Oncology, Changsha Central Hospital, No. 161, Shaoshan South Road, Changsha, Hunan, China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, No. 161, Shaoshan South Road, Changsha, Hunan, China.
| |
Collapse
|
19
|
Ma W, Zhao X, Gao Y, Yao X, Zhang J, Xu Q. Circular RNA circ_UBAP2 facilitates the progression of osteosarcoma by regulating microRNA miR-637/high-mobility group box (HMGB) 2 axis. Bioengineered 2022; 13:4411-4427. [PMID: 35114890 PMCID: PMC8974191 DOI: 10.1080/21655979.2022.2033447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Circular RNA circ_UBAP2 has been reported to be closely associated with various tumors. The present work focused on exploring the roles of circ_UBAP2 and its molecular mechanism in osteosarcoma (OS). Circ_UBAP2, miR-637, and high-mobility group box (HMGB) 2 levels in OS cells and tissues were detected by quantitative real-time polymerase chain reaction. The relationship between miR-637 and circ_UBAP2, as well as between miR-637 and HMGB2, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), Transwell and flow cytometry assays, respectively. HMGB2 protein levels were measured using Western blotting. Xenograft tumor formation assay was also performed. Circ_UBAP2 showed high expression levels in OS tissues and cells, which was directly proportional to metastasis and clinical stage of OS. The overexpression of circ_UBAP2 enhanced the growth, invasion, and migration of OS cells, but suppressed their apoptosis. In contrast, circ_UBAP2 silencing had opposite effects. Furthermore, miR-637 served as a downstream target of circ_UBAP2, which played opposite roles to circ_UBAP2 in OS. More importantly, HMGB2 served as miR-637's downstream target. The xenograft experiments in nude mice also proved that knockdown of circ_UBAP2 could increase miR-637 expression, but decrease HMGB2 expression, thus alleviating OS progression. Mechanistically, circ_UBAP2 exerts a cancer-promoting effect on OS by downregulating miR-637 and upregulating the expression of HMGB2. Circ_UBAP2 plays a promoting role in OS, and the circ_UBAP2/miR-637/HMGB2 axis is involved in OS progression.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| |
Collapse
|
20
|
Novel circular RNA circ_0086722 drives tumor progression by regulating the miR-339-5p/STAT5A axis in prostate cancer. Cancer Lett 2022; 533:215606. [DOI: 10.1016/j.canlet.2022.215606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
|
21
|
Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 2022; 20:13. [PMID: 35090496 PMCID: PMC8796413 DOI: 10.1186/s12964-021-00809-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.
Collapse
Affiliation(s)
- Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Zhang R, Zhao H, Yuan H, Wu J, Liu H, Sun S, Zhang Z, Wang J. CircARVCF Contributes to Cisplatin Resistance in Gastric Cancer by Altering miR-1205 and FGFR1. Front Genet 2021; 12:767590. [PMID: 34899853 PMCID: PMC8656457 DOI: 10.3389/fgene.2021.767590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Chemoresistance is a major barrier to the treatment of human cancers. Circular RNAs (circRNAs) are implicated in drug resistance in cancers, including gastric cancer (GC). In this study, we aimed to explore the functions of circRNA Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (circARVCF) in cisplatin (DDP) resistance in GC. Methods: The expression of circARVCF, microRNA-1205 (miR-1205) and fibroblast growth factor receptor 1 (FGFR1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate DDP resistance and cell colony formation ability. Transwell assay was conducted to assess cell migration and invasion. Flow cytometry analysis was done to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circARVCF, miR-1205 and FGFR1. Murine xenograft model was constructed to explore DDP resistance in vivo. Results: CircARVCF level was increased in DDP-resistant GC tissues and cells. CircARVCF silencing inhibited DDP resistance, colony formation and metastasis and induced apoptosis in DDP-resistant GC cells. CircARVCF directly interacted with miR-1205 and miR-1205 inhibition reversed circARVCF silencing-mediated effect on DDP resistance in DDP-resistant GC cells. FGFR1 served as the target gene of miR-1205. MiR-1205 overexpression restrained the resistance of DDP-resistant GC cells to DDP, but FGFR1 elevation abated the effect. In addition, circARVCF knockdown repressed DDP resistance in vivo. Conclusion: CircARVCF enhanced DDP resistance in GC by elevating FGFR1 through sponging miR-1205.
Collapse
Affiliation(s)
- Ruirui Zhang
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| | - Huanyu Zhao
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| | - Hongmei Yuan
- Department of Pathology, Huai'an Huaiyin Hospital, Huaian, China
| | - Jian Wu
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| | - Haiyan Liu
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| | - Suan Sun
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| | - Zhengwei Zhang
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| | - Jiayang Wang
- Department of Rodio Chemotherapy, Huai'an First People's Hospital, Nanjing Medical University, Huaian, China
| |
Collapse
|
23
|
Hsa_circ_0005915 promotes N,N-dimethylformamide-induced oxidative stress in HL-7702 cells through NRF2/ARE axis. Toxicology 2021; 458:152838. [PMID: 34153373 DOI: 10.1016/j.tox.2021.152838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023]
Abstract
N,N-dimethylformamide (DMF) is an organic compound widely used in industrial production processes as a solvent with a low evaporation rate. Excessive exposure to DMF may lead to liver damage. Oxidative stress has been reported as one of the main causes of DMF-induced hepatotoxicity. Several doses of DMF (0, 1, 5, and 10 mM) were used to treat HL-7702 cells for a relatively long period to simulate the actual exposure pattern in occupational settings, and oxidative stress was induced. Previous studies illustrated that circular RNA (circRNA) plays a vital role in sustaining hepatocyte physiological function. To explore whether aberrant circRNA expression is involved in DMF-induced excessive ROS generation and hepatotoxicity, high-throughput transcriptional sequencing was performed to identify the altered circRNA expression profiles in HL-7702 liver cells after treatment with 0, 75, or 150 mM DMF for 48 h. We found that levels of induced oxidative stress were similar to those in the long-term exposure model. Among the altered circRNAs, one circRNA (hsa_circ_0005915) was significantly upregulated after DMF exposure, and it affected DMF-mediated oxidative stress in HL-7702 cells. Further experiments revealed that hsa_circ_0005915 downregulated the expression of nuclear factor erythoid-2-related factor 2 (NRF2) at the post-transcriptional level via promoting the ubiquitination and degradation of NRF2, which led to the increase of ROS accumulation. Further investigation demonstrated that the expression levels of NRF2-regulated antioxidative genes-heme oxygenase 1 (HO1) and NAD(P)H quinone dehydrogenase 1 (NQO1)-indeed declined after the overexpression of hsa_circ_0005915. In vivo study also indicated that DMF exposure can upregulate the expression of mmu_circ_0007941 (homologous circRNA of hsa_circ_0005915) and downregulated Nrf2 and Ho1 proteins. In summary, our results revealed that hsa_circ_0005915 plays an important role in promoting DMF-induced oxidative stress by inhibiting the transcriptional activity of the NRF2/ARE axis, which provides a potential molecular mechanism of DMF-mediated hepatotoxicity.
Collapse
|
24
|
Shao Y, Yang Z, Miao W, Yu X, Wu Y, Pu Y. circ_0030018 promotes glioma proliferation and metastasis. Transl Neurosci 2021; 12:260-272. [PMID: 34150336 PMCID: PMC8190564 DOI: 10.1515/tnsci-2020-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
Background Circular RNA (circRNA) plays an essential role in tumor progression, including glioma. circ_0030018 is a newly discovered circRNA that is highly expressed in glioma. However, its role and mechanism in glioma need to be further elucidated. Methods The expression of circ_0030018, microRNA (miR)-194-5p, and tripartite motif containing 44 (TRIM44) was examined using quantitative real-time PCR. Cell proliferation, migration, invasion, and apoptosis were determined using MTT assay, colony formation assay, transwell assay, and flow cytometry. Moreover, dual-luciferase reporter assay and RNA pull-down assay were used to verify the interactions among circ_0030018, miR-194-5p, and TRIM44. The protein expression of TRIM44 was assessed by western blot analysis. Animal experiments were conducted to explore the role of circ_0030018 in glioma tumor growth in vivo. Results circ_0030018 was overexpressed in glioma tissues and cells, and its silencing could inhibit glioma cell proliferation, migration, invasion, and accelerate apoptosis. miR-194-5p could be sponged by circ_0030018, and its overexpression could hinder the progression of glioma cells. Further experiments revealed that miR-194-5p inhibitor reversed the negative regulation of circ_0030018 knockdown on glioma cell progression. In addition, TRIM44 was a target of miR-194-5p, and its downregulation could repress glioma cell progression. Overexpressed TRIM44 reversed the inhibition effect of miR-194-5p on glioma cell progression. Animal experiments suggested that circ_0030018 knockdown could reduce glioma tumor growth through regulating miR-194-5p and TRIM44. Conclusion Our 8data showed that circ_0030018 enhanced glioma progression by sponging miR-194-5p to regulate TRIM44, indicating that circ_0030018 might be a potential treatment target for glioma.
Collapse
Affiliation(s)
- Yun Shao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi City, Jiangsu, 214023, China
| | - Zhengxiang Yang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi City, Jiangsu, 214023, China
| | - Weifeng Miao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi City, Jiangsu, 214023, China
| | - Xiangrong Yu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi City, Jiangsu, 214023, China
| | - Yiping Wu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi City, Jiangsu, 214023, China
| | - Yi Pu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi City, Jiangsu, 214023, China
| |
Collapse
|