1
|
Marques IS, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, de Melo IG, Assis J, Pereira D, Medeiros R. Long Non-Coding RNAs: Bridging Cancer-Associated Thrombosis and Clinical Outcome of Ovarian Cancer Patients. Int J Mol Sci 2023; 25:140. [PMID: 38203310 PMCID: PMC10778953 DOI: 10.3390/ijms25010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) and venous thromboembolism (VTE) have a close relationship, in which tumour cells surpass the haemostatic system to drive cancer progression. Long non-coding RNAs (lncRNAs) have been implicated in VTE pathogenesis, yet their roles in cancer-associated thrombosis (CAT) and their prognostic value are unexplored. Understanding how these lncRNAs influence venous thrombogenesis and ovarian tumorigenesis may lead to the identification of valuable biomarkers for VTE and OC management. Thus, this study evaluated the impact of five lncRNAs, namely MALAT1, TUG1, NEAT1, XIST and MEG8, on a cohort of 40 OC patients. Patients who developed VTE after OC diagnosis had worse overall survival compared to their counterparts (log-rank test, p = 0.028). Elevated pre-chemotherapy MEG8 levels in peripheral blood cells (PBCs) predicted VTE after OC diagnosis (Mann-Whitney U test, p = 0.037; Χ2 test, p = 0.033). In opposition, its low levels were linked to a higher risk of OC progression (adjusted hazard ratio (aHR) = 3.00; p = 0.039). Furthermore, low pre-chemotherapy NEAT1 levels in PBCs were associated with a higher risk of death (aHR = 6.25; p = 0.008). As for the remaining lncRNAs, no significant association with VTE incidence, OC progression or related mortality was observed. Future investigation with external validation in larger cohorts is needed to dissect the implications of the evaluated lncRNAs in OC patients.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
2
|
Jiang M, Dai J, Jiang C, Pan Y, Ren M, Xing M. Long noncoding RNA MEG8 induces an imbalance of Th17/Treg cells through the miR-107/STAT3 axis in Henoch-Schonlein purpura rats. Aging (Albany NY) 2023; 15:13854-13864. [PMID: 38054824 PMCID: PMC10756103 DOI: 10.18632/aging.205266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
T-helper (Th) 17/ T-regulatory (Treg) cell dysregulation underlies the pathogenesis of Henoch-Schonlein purpura (HSP). This research focused on the implication/s of the long noncoding RNA (lncRNAs) maternally expressed gene 8 (MEG8) in Th17 and Treg cell differentiation in HSP rats. MEG8, miR-107, signal transducer and activator of transcription-3 (STAT3), receptor-related orphan receptor γt (RORγt), and the transcription factor forkhead box P3 (Foxp3) expression levels were detected using real-time quantitative polymerase chain reaction and Western blot analyses. Flow cytometry was employed for measuring Th17 and Treg cells within the CD4+ T cell population. The interaction between miR-107 and MEG8 or STAT3 was examined. A low proportion of MEG8 and Treg cells together with Th17 cells were denoted within HSP rats. Moreover, MEG8 overexpression altered the Th17/Treg imbalance in peripheral blood CD4+ T-cell population, and the miR-107 mimic and STAT3 silencing reversed this effect. Thus, MEG8 served as a sponge for miR-107, lowering binding activity to STAT3 and thus overexpressing the molecule. Taken together, MEG8 induces an imbalance of Th17/Treg cells through the miR-107/STAT3 axis in HSP rats.
Collapse
Affiliation(s)
- Mingyu Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jicheng Dai
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Chunming Jiang
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai 519060, P.R. China
| | - Yanbo Pan
- Department of Neurosurgery, Tieling Central Hospital, Tieling 112000, P.R. China
| | - Mingyong Ren
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Mengnan Xing
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| |
Collapse
|
3
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
4
|
Li H, Liu ZY, Chen YC, Zhang XY, Wu N, Wang J. Identification and validation of an immune-related lncRNAs signature to predict the overall survival of ovarian cancer. Front Oncol 2022; 12:999654. [PMID: 36313727 PMCID: PMC9596922 DOI: 10.3389/fonc.2022.999654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer in women. Studies had reported that immune-related lncRNAs signatures were valuable in predicting the survival and prognosis of patients with various cancers. In our study, the prognostic value of immune-related lncRNAs was investigated in OC patients from TCGA-RNA-seq cohort (n=378) and HG-U133_Plus_2 cohort (n=590), respectively. Pearson correlation analysis was implemented to screen the immune-related lncRNA and then univariate Cox regression analysis was performed to explore their prognostic value in OC patients. Five prognostic immune-related lncRNAs were identified as prognostic lncRNAs. Besides, they were inputted into a LASSO Cox regression to establish and validate an immune-related lncRNA prognostic signature in TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort, respectively. Based on the best cut-off value of risk score, patients were divided into high- and low-risk groups. Survival analysis suggested that patients in the high-risk group had a worse overall survival (OS) than those in the low-risk group in both cohorts. The association between clinicopathological feathers and risk score was then evaluated by using stratification analysis. Moreover, we constructed a nomogram based on risk score, age and stage, which had a strong ability to forecast the OS of the OC patients. The influence of risk score on immune infiltration and immunotherapy response were assessed and the results suggested that patients with high-risk score might recruit multiple immune cells and stromal cells, leading to facilitating immune surveillance evasive. Ultimately, we demonstrated that the risk model was associated with chemotherapy response of multiple antitumor drugs, especially for paclitaxel, metformin and veliparib, which are commonly used in treating OC patients. In conclusion, we constructed a novel immune-related lncRNA signature, which had a potential prognostic value for OC patients and might facilitate personalized counselling for immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- He Li
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Yi Liu
- The Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong-Chang Chen
- The Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiao-Ye Zhang
- The Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nayiyuan Wu
- The Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Jing Wang, ; Nayiyuan Wu,
| | - Jing Wang
- The Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Jing Wang, ; Nayiyuan Wu,
| |
Collapse
|
5
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Shojaei S. A review on the role of MEG8 lncRNA in human disorders. Cancer Cell Int 2022; 22:285. [PMID: 36114498 PMCID: PMC9482158 DOI: 10.1186/s12935-022-02705-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMaternally expressed 8 (MEG8) is a long non-coding RNA which is expressed in the nucleus. It is highly expressed in adrenal, placenta and brain. Recent studies have shown contribution of MEG8 in different disorders ranging from neoplastic ones to diabetic nephropathy, atherosclerosis, ischemic stroke, trophoblast dysfunction and abortion, Henoch-Schonlein purpura and osteoarthritis. It has an oncogenic role in the development of lung, pancreatic and liver cancer. In the current review, we summarize the role of this lncRNA in mentioned disorders, based on the evidence obtained from in vitro, in vivo and human studies.
Collapse
|
6
|
Du Z, Tan F, Chen J, Wang B, Liu Y, Zhao F, Wu Y, Yuan C. MEG8:An Indispensable Long Non-coding RNA in Multiple Cancers. Curr Pharm Des 2022; 28:1688-1694. [PMID: 35578848 DOI: 10.2174/1381612828666220516090245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a member of long non-coding RNAs (lncRNAs), maternally expressed gene 8 (MEG8) has been found involving in the progression of a variety of cancers and playing a regulatory role. Therefore, MEG8 may turn into a new therapeutic target for cancer in the future. The purpose of this review is to illustrate the molecular mechanism and physiological function of MEG8 in various cancers. METHODS We retrieved and analyzed related articles about MEG8, lncRNAs and cancers, and then summarize the pathophysiological mechanisms of MEG8 in cancer development. RESULTS LncRNA MEG8 participates in various cancers progression, thus influencing the proliferation, migration, and invasion of cancers. However, the expression of MEG8 is abnormally upregulated in non-small cell lung cancer (NSCLC), pancreatic cancer (PC), liver cancer (HCC), pituitary adenoma (PA) and hemangioma (HA), and inhibited in colorectal cancer (CRC), ovarian cancer (OC) and giant cell tumor (GCT), suggesting its clinical value in cancer therapy. CONCLUSIONS LncRNA MEG8 is expected to be a new therapeutic target or biomarker for a wide range of cancers in the future.
Collapse
Affiliation(s)
- Zhuoying Du
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Yuling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Fangnan Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Yinxin Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
7
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Shan G, Huang T, Tang T. Long non-coding RNA MEG8 induced by PLAG1 promotes clear cell renal cell carcinoma through the miR-495-3p/G3BP1 axis. Pathol Res Pract 2022; 229:153734. [PMID: 35030351 DOI: 10.1016/j.prp.2021.153734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is recognized as one of the most lethal malignancies among the urological system, with constantly increasing mortality. While the molecular mechanisms underlying ccRCC progression are still poorly understood, the molecular and functional role of lncRNA in multiple diseases has been well demonstrated. In this study, we hypothesized that lncRNA MEG8 might participate in ccRCC development. At first, we found that MEG8 expression was increased in ccRCC tumor tissues and cells. Next, we demonstrated that MEG8 knockdown suppressed cell viability, migration, and invasion in vitro and inhibited tumor growth in vivo. Subsequently, we utilized bioinformatics analysis, ChIP, and luciferase assays, and we found that PLAG1 could transcriptionally regulate MEG8 in ccRCC cells. Furthermore, MEG8 promoted G3BP1 expression to aggravate ccRCC tumorigenic properties through sponging miR-495-3p. Our study identified a novel PLAG1/MEG8/miR-495-3p/G3BP1 network in ccRCC development, which might be a promising direction for developing new diagnoses or therapeutic agents for ccRCC.
Collapse
Affiliation(s)
- Guang Shan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ting Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tian Tang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|