1
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
2
|
Sun D, Shi X, Li S, Wang X, Yang X, Wan M. CAR‑T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Mol Med Rep 2024; 29:47. [PMID: 38275119 PMCID: PMC10835665 DOI: 10.3892/mmr.2024.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Chimeric antigen receptor (CAR)‑T cell therapy is an innovative approach to immune cell therapy that works by modifying the T cells of a patient to express the CAR protein on their surface, and thus induce their recognition and destruction of cancer cells. CAR‑T cell therapy has shown some success in treating hematological tumors, but it still faces a number of challenges in the treatment of solid tumors, such as antigen selection, tolerability and safety. In response to these issues, studies continue to improve the design of CAR‑T cells in pursuit of improved therapeutic efficacy and safety. In the future, CAR‑T cell therapy is expected to become an important cancer treatment, and may provide new ideas and strategies for individualized immunotherapy. The present review provides a comprehensive overview of the principles, clinical applications, therapeutic efficacy and challenges of CAR‑T cell therapy.
Collapse
Affiliation(s)
- Dahua Sun
- Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiaohua Wang
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiao Yang
- Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Meiping Wan
- Department of Traditional Chinese Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
3
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
4
|
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9842. [PMID: 38139688 PMCID: PMC10747598 DOI: 10.3390/s23249842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
5
|
Huang S, Bai Y, An Z, Xu C, Zhang C, Wang F, Zhong C, Zhong X. Gastrodin synergistically increases migration of interleukin-13 receptor α2 chimeric antigen receptor T cell to the brain against glioblastoma multiforme: A preclinical study. Phytother Res 2023; 37:5947-5957. [PMID: 37748098 DOI: 10.1002/ptr.8007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/27/2023]
Abstract
Therapy with chimeric antigen receptor T (CAR-T) cells involves using reformative T lymphocytes that have three domains, antigen recognition, transmembrane, and costimulating to achieve the therapeutic purpose. CAR-T therapy on malignant hematologic has been successful; however, its effectiveness in patients with solid tumors is still limited. Few studies exist confirming the efficacy of natural products on the function of CAR-T cells. The purpose of this study is to assess the effect of gastrodin (GAS) on CAR-T cells that target interleukin-13 receptor α2 antigen (IL-13Rα2 CAR-T) in the brain against glioblastoma multiforme. Migration of IL-13Rα2 CAR-T was evaluated using the Transwell assay. The effects of GAS on IL-13Rα2 CAR-T cells were assessed both in vitro and situ glioblastoma models. The cytoskeleton was stained with Fluorescein 5-isothiocyanate (FITC)-phalloidin. Cytokines expression in cells was determined by flow cytometry and ELISA assay. Western blotting was used to detect the S1P1 expression, and quantitative PCR assay was used to determine the IL-13Rα2 gene level. GAS increased the migratory and destructive capacity of IL-13Rα2 CAR-T cells with no effect on cytokine release. By increasing the expression of S1P1, GAS encouraged the entry of CAR-T cells into the brain and bone marrow. Transcriptomic analysis revealed that genes related to skeletal migration such as add2 and gng8 showed increased expression in GAS-treated CAR-T cells. We found that GAS synergistically improves the mobility of IL-13Rα2 CAR-T, enhancing their ability to recognize the tumor antigen of glioblastoma, which could be advantageous for the application of CAR-T for the treatment of solid tumors.
Collapse
Affiliation(s)
- Shuai Huang
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yue Bai
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhijing An
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chang Xu
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Can Zhang
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaosong Zhong
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Gardam B, Gargett T, Brown MP, Ebert LM. Targeting the dendritic cell-T cell axis to develop effective immunotherapies for glioblastoma. Front Immunol 2023; 14:1261257. [PMID: 37928547 PMCID: PMC10623138 DOI: 10.3389/fimmu.2023.1261257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that has seen few advances in treatments for over 20 years. In response to this desperate clinical need, multiple immunotherapy strategies are under development, including CAR-T cells, immune checkpoint inhibitors, oncolytic viruses and dendritic cell vaccines, although these approaches are yet to yield significant clinical benefit. Potential reasons for the lack of success so far include the immunosuppressive tumor microenvironment, the blood-brain barrier, and systemic changes to the immune system driven by both the tumor and its treatment. Furthermore, while T cells are essential effector cells for tumor control, dendritic cells play an equally important role in T cell activation, and emerging evidence suggests the dendritic cell compartment may be deeply compromised in glioblastoma patients. In this review, we describe the immunotherapy approaches currently under development for glioblastoma and the challenges faced, with a particular emphasis on the critical role of the dendritic cell-T cell axis. We suggest a number of strategies that could be used to boost dendritic cell number and function and propose that the use of these in combination with T cell-targeting strategies could lead to successful tumor control.
Collapse
Affiliation(s)
- Bryan Gardam
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tessa Gargett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Michael P. Brown
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Lisa M. Ebert
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
7
|
Bartusik-Aebisher D, Serafin I, Dynarowicz K, Aebisher D. Photodynamic therapy and associated targeting methods for treatment of brain cancer. Front Pharmacol 2023; 14:1250699. [PMID: 37841921 PMCID: PMC10568033 DOI: 10.3389/fphar.2023.1250699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Brain tumors, including glioblastoma multiforme, are currently a cause of suffering and death of tens of thousands of people worldwide. Despite advances in clinical treatment, the average patient survival time from the moment of diagnosis of glioblastoma multiforme and application of standard treatment methods such as surgical resection, radio- and chemotherapy, is less than 4 years. The continuing development of new therapeutic methods for targeting and treating brain tumors may extend life and provide greater comfort to patients. One such developing therapeutic method is photodynamic therapy. Photodynamic therapy is a progressive method of therapy used in dermatology, dentistry, ophthalmology, and has found use as an antimicrobial agent. It has also found wide application in photodiagnosis. Photodynamic therapy requires the presence of three necessary components: a clinically approved photosensitizer, oxygen and light. This paper is a review of selected literature from Pubmed and Scopus scientific databases in the field of photodynamic therapy in brain tumors with an emphasis on glioblastoma treatment.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
8
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Bianconi A, Palmieri G, Aruta G, Monticelli M, Zeppa P, Tartara F, Melcarne A, Garbossa D, Cofano F. Updates in Glioblastoma Immunotherapy: An Overview of the Current Clinical and Translational Scenario. Biomedicines 2023; 11:1520. [PMID: 37371615 DOI: 10.3390/biomedicines11061520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive central nervous system tumor, requiring multimodal management. Due to its malignant behavior and infiltrative growth pattern, GBM is one of the most difficult tumors to treat and gross total resection is still considered to be the first crucial step. The deep understanding of GBM microenvironment and the possibility of manipulating the patient's innate and adaptive immune system to fight the neoplasm represent the base of immunotherapeutic strategies that currently express the future for the fight against GBM. Despite the immunotherapeutic approach having been successfully adopted in several solid and haematologic neoplasms, immune resistance and the immunosuppressive environment make the use of these strategies challenging in GBM treatment. We describe the most recent updates regarding new therapeutic strategies that target the immune system, immune checkpoint inhibitors, chimeric antigen receptor T cell therapy, peptide and oncolytic vaccines, and the relevant mechanism of immune resistance. However, no significant results have yet been obtained in studies targeting single molecules/pathways. The future direction of GBM therapy will include a combined approach that, in contrast to the inescapable current treatment modality of maximal resection followed by chemo- and radiotherapy, may combine a multifaceted immunotherapy treatment with the dual goals of directly killing tumor cells and activating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | | | - Gelsomina Aruta
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Matteo Monticelli
- UOC Neurochirurgia, Dipartimento di Medicina Traslazionale e per la Romagna, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
10
|
Lim XY, Capinpin SM, Bolem N, Foo ASC, Yip WG, Kumar AP, Teh DBL. Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioeng Transl Med 2023; 8:e10483. [PMID: 37206213 PMCID: PMC10189489 DOI: 10.1002/btm2.10483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis and high mortality, with no curative treatment to date as limited trafficking across the blood-brain barrier (BBB) combined with tumor heterogeneity often leads to therapeutic failure. Although modern medicine poses a wide range of drugs that are otherwise efficacious in treating other tumors, they often do not achieve therapeutic concentrations in the brain, hence driving the need for more effective drug delivery strategies. Nanotechnology, an interdisciplinary field, has been gaining immense popularity in recent years for remarkable advancements such as nanoparticle (NP) drug carriers, which possess extraordinary versatility in modifying surface coatings to home in on target cells, including those beyond the BBB. In this review, we will be highlighting recent developments in biomimetic NPs in GBM therapy and how these allowed us to overcome the physiological and anatomical challenges that have long plagued GBM treatment.
Collapse
Affiliation(s)
- Xin Yuan Lim
- MBBS ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Sharah Mae Capinpin
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer ResearchYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Nagarjun Bolem
- Department of Surgery, Division of NeurosurgeryNational University HospitalSingaporeSingapore
| | - Aaron Song Chuan Foo
- MBBS ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Surgery, Division of NeurosurgeryNational University HospitalSingaporeSingapore
| | - Wai‐Cheong George Yip
- Department of AnatomyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer ResearchYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Daniel Boon Loong Teh
- Department of AnatomyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of OphthalmologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NeurobiologyLife Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
11
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
12
|
Marei HE. Multimodal targeting of glioma with functionalized nanoparticles. Cancer Cell Int 2022; 22:265. [PMID: 35999629 PMCID: PMC9396820 DOI: 10.1186/s12935-022-02687-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The most common and aggressive primitive intracranial tumor of the central nervous system is the glioma. The blood–brain barrier (BBB) has proven to be a significant obstacle to the effective treatment of glioma. To effectively treat glioma, different ways have been used to cross the BBB to deliver drugs to the brain. Drug delivery through nanocarriers proves to be an effective and non-invasive technique for the treatment of glioma and has great potential in the treatment of glioma. In this review, we will provide an overview of nanocarrier-mediated drug delivery and related glioma therapy. Nanocarrier-mediated drug delivery techniques to cross the BBB (liposomes, micelles, inorganic systems, polymeric nanoparticles, nanogel system, and biomimetic nanoparticles) are explored. Finally, the use of nanotherapeutic approaches in the treatment of glioblastoma including chemotherapy, radiotherapy, photothermal therapy, gene therapy, glioma genome editing, immunotherapy, chimeric antigen receptor (CAR) T-cells, immune checkpoint modulators, immune photothermal therapy, vaccine-based immunotherapy, and combination therapy is summarized. Furthermore, this article offers various views on the clinical applicability of nanomedicine.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| |
Collapse
|
13
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Lodi R, Bartolini S, Brandes AA. Glioblastoma: Emerging Treatments and Novel Trial Designs. Cancers (Basel) 2021; 13:cancers13153750. [PMID: 34359651 PMCID: PMC8345198 DOI: 10.3390/cancers13153750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nowadays, very few systemic agents have shown clinical activity in patients with glioblastoma, making the research of novel therapeutic approaches a critical issue. Fortunately, the availability of novel compounds is increasing thanks to better biological knowledge of the disease. In this review we want to investigate more promising ongoing clinical trials in both primary and recurrent GBM. Furthermore, a great interest of the present work is focused on novel trial design strategies. Abstract Management of glioblastoma is a clinical challenge since very few systemic treatments have shown clinical efficacy in recurrent disease. Thanks to an increased knowledge of the biological and molecular mechanisms related to disease progression and growth, promising novel treatment strategies are emerging. The expanding availability of innovative compounds requires the design of a new generation of clinical trials, testing experimental compounds in a short time and tailoring the sample cohort based on molecular and clinical behaviors. In this review, we focused our attention on the assessment of promising novel treatment approaches, discussing novel trial design and possible future fields of development in this setting.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
- Correspondence: ; Tel.: +39-0516225697
| | - Enrico Franceschi
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 40139 Bologna, Italy;
| | - Stefania Bartolini
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alba Ariela Brandes
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| |
Collapse
|
14
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Cenciarelli C. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med 2021; 10:5019-5030. [PMID: 34145792 PMCID: PMC8335808 DOI: 10.1002/cam4.4064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo‐ and radiotherapeutic modalities, which are not effective. CAR‐T immunotherapy has been proven effective for CD19‐positive blood malignancies, and the application of CAR‐T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR‐T technology depends on the use of patient‐specific T cells genetically engineered to express specific tumor‐associated antigens (TAAs). Interaction of CAR‐T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR‐T cell‐based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood‐brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR‐T cells (including FcγRs), the different GBM‐associated antigens, the challenges still facing CAR‐T‐based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR‐T cell therapy for GBM depends on their solution.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | | |
Collapse
|