1
|
Yue W, Wang J, Lin B, Fu Y. Identifying lncRNAs and mRNAs related to survival of NSCLC based on bioinformatic analysis and machine learning. Aging (Albany NY) 2024; 16:7799-7817. [PMID: 38696317 PMCID: PMC11131976 DOI: 10.18632/aging.205783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 12/06/2023] [Indexed: 05/04/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the most common histopathological type, and it is purposeful for screening potential prognostic biomarkers for NSCLC. This study aims to identify the lncRNAs and mRNAs related to survival of non-small cell lung cancer (NSCLC). The expression profile data of lung adenocarcinoma and lung squamous cell carcinoma were downloaded in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset. A total of eight survival related long non-coding RNAs (lncRNAs) and 262 survival related mRNAs were filtered. By gene set enrichment analysis, 17 significantly correlated Gene Ontology signal pathways and 14 Kyoto Encyclopedia of Genes and Genomes signal pathways were screened. Based on the clinical survival and prognosis information of the samples, we screened eight lncRNAs and 193 mRNAs by single factor Cox regression analysis. Further single and multifactor Cox regression analysis were performed, 30 independent prognostication-related mRNAs were obtained. The PPI network was further constructed. We then performed the machine learning algorithms (Least absolute shrinkage and selection operator, Recursive feature elimination, and Random forest) to screen the optimized DEGs combination, and a total of 17 overlapping mRNAs were obtained. Based on the 17 characteristic mRNAs obtained, we firstly built a Nomogram prediction model, and the ROC values of training set and testing set were 0.835 and 0.767, respectively. By overlapping the 17 characteristic mRNAs and PPI network hub genes, three genes were obtained: CDC6, CEP55, TYMS, which were considered as key factors associated with survival of NSCLC. The in vitro experiments were performed to examine the effect of CDC6, CEP55, and TYMS on NSCLC cells. Finally, the lncRNAs-mRNAs networks were constructed.
Collapse
Affiliation(s)
- Wei Yue
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Jing Wang
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Bo Lin
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Yongping Fu
- Department of Cardiovascular Medicine, Affiliated Hospital of Shaoxing University, Shaoxing 312099, China
| |
Collapse
|
2
|
Yin W, Chen G, Li Y, Li R, Jia Z, Zhong C, Wang S, Mao X, Cai Z, Deng J, Zhong W, Pan B, Lu J. Identification of a 9-gene signature to enhance biochemical recurrence prediction in primary prostate cancer: A benchmarking study using ten machine learning methods and twelve patient cohorts. Cancer Lett 2024; 588:216739. [PMID: 38395379 DOI: 10.1016/j.canlet.2024.216739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Prostate cancer (PCa) is a prevalent malignancy among men worldwide, and biochemical recurrence (BCR) after radical prostatectomy (RP) is a critical turning point commonly used to guide the development of treatment strategies for primary PCa. However, the clinical parameters currently in use are inadequate for precise risk stratification and informing treatment choice. To address this issue, we conducted a study that collected transcriptomic data and clinical information from 1662 primary PCa patients across 12 multicenter cohorts globally. We leveraged 101 algorithm combinations that consisted of 10 machine learning methods to develop and validate a 9-gene signature, named BCR SCR, for predicting the risk of BCR after RP. Our results demonstrated that BCR SCR generally outperformed 102 published prognostic signatures. We further established the clinical significance of these nine genes in PCa progression at the protein level through immunohistochemistry on Tissue Microarray (TMA). Moreover, our data showed that patients with higher BCR SCR tended to have higher rates of BCR and distant metastasis after radical radiotherapy. Through drug target prediction analysis, we identified nine potential therapeutic agents for patients with high BCR SCR. In conclusion, the newly developed BCR SCR has significant translational potential in accurately stratifying the risk of patients who undergo RP, monitoring treatment courses, and developing new therapies for the disease.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yutong Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Ruidong Li
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macau, China.
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Chen C, Wan M, Peng X, Zhang Q, Liu Y. GPR37-centered ceRNA network contributes to metastatic potential in lung adenocarcinoma: Evidence from high-throughput sequencing. Transl Oncol 2024; 39:101819. [PMID: 37979558 PMCID: PMC10656721 DOI: 10.1016/j.tranon.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
The competing endogenous RNA (ceRNA)-based profiling has been extensively studied in carcinogenesis of lung adenocarcinoma (LUAD), while it has seldomly been applied to investigate the metastatic potential of LUAD. This study aims to examine the function and in-depth mechanism of GPR37-centered ceRNA network in LUAD. Cancer tissues and adjacent normal tissues from three LUAD patients were collected for high-throughput sequencing to screen for differentially expressed genes. A PPI network was constructed to screen the key gene GPR37, followed by analysis for the functions and pathways. Clinical data from LUAD patients were integrated with gene expression data in TCGA-LUAD dataset for survival analysis. Based on the miRNAs targeting_GPR37 and lncRNAs targeting_miRNAs, a lncRNA-miRNA-mRNA ceRNA network was established. GPR37 was up-regulated in LUAD tissue samples, and it may be a key gene involved in LUAD progression. GPR37 in LUAD was mainly enriched in the mitosis-related pathways. High GPR37 expression corresponded to poor prognosis in LUAD patients. Meanwhile, GPR37 could be used as an independent factor to predict the prognosis in LUAD patients. LncRNA DLEU1, up-regulated in LUAD tissue samples, may competitively bind to miR-4458 to up-regulate the expression of the miR-4458 downstream target GPR37. DLEU1 was associated with poor prognosis and tumor metastasis in LUAD patients. Altogether, our findings reveal a novel ceRNA network of DLEU1/miR-4458/GPR37 in LUAD growth and metastasis.
Collapse
Affiliation(s)
- Chuanhui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Mengzhi Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiong Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Qing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
4
|
Chen Z, Yang K, Zhang J, Ren S, Chen H, Guo J, Cui Y, Wang T, Wang M. Systems crosstalk between antiviral response and cancerous pathways via extracellular vesicles in HIV-1-associated colorectal cancer. Comput Struct Biotechnol J 2023; 21:3369-3382. [PMID: 37389186 PMCID: PMC10300105 DOI: 10.1016/j.csbj.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
HIV-1 associated colorectal cancer (HA-CRC) is one of the most understudied non-AIDS-defining cancers. In this study, we analyzed the proteome of HA-CRC and the paired remote tissues (HA-RT) through data-independent acquisition mass spectrometry (MS). The quantified proteins could differentiate the HA-CRC and HA-RT groups per PCA or cluster analyses. As a background comparison, we reanalyzed the MS data of non-HIV-1 infected CRC (non-HA-CRC) published by CPTAC. According to the GSEA results, we found that HA-CRC and non-HA-CRC shared similarly over-represented KEGG pathways. Hallmark analysis suggested that terms of antiviral response were only significantly enriched in HA-CRC. The network and molecular system analysis centered the crosstalk of IFN-associated antiviral response and cancerous pathways, which was favored by significant up-regulation of ISGylated proteins as detected in the HA-CRC tissues. We further proved that defective HIV-1 reservoir cells as represented by the 8E5 cells could activate the IFN pathway in human macrophages via horizonal transfer of cell-associated HIV-1 RNA (CA-HIV RNA) carried by extracellular vesicles (EVs). In conclusion, HIV-1 reservoir cells secreted and CA-HIV RNA-containing EVs can induce IFN pathway activation in macrophages that contributes to one of the mechanistic explanations of the systems crosstalk between antiviral response and cancerous pathways in HA-CRC.
Collapse
Affiliation(s)
- Zimei Chen
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Ke Yang
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiayi Zhang
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shufan Ren
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Chen
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiahui Guo
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yizhi Cui
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Tong Wang
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Min Wang
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| |
Collapse
|
5
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|