1
|
Canchi Sistla H, Talluri S, Rajagopal T, Venkatabalasubramanian S, Rao Dunna N. Genomic instability in ovarian cancer: Through the lens of single nucleotide polymorphisms. Clin Chim Acta 2025; 565:119992. [PMID: 39395774 DOI: 10.1016/j.cca.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy among all female reproductive cancers. It is characterized by high mortality rate and poor prognosis. Genomic instability caused by mutations, single nucleotide polymorphisms (SNPs), copy number variations (CNVs), microsatellite instability (MSI), and chromosomal instability (CIN) are associated with OC predisposition. SNPs, which are highly prevalent in the general population, show a greater relative risk contribution, particularly in sporadic cancers. Understanding OC etiology in terms of genetic basis can increase the use of molecular diagnostics and provide promising approaches for designing novel treatment modalities. This will help deliver personalized medicine to OC patients, which may soon be within reach. Given the pivotal impact of SNPs in cancers, the primary emphasis of this review is to shed light on their prevalence in key caretaker genes that closely monitor genomic integrity, viz., DNA damage response, repair, cell cycle checkpoints, telomerase maintenance, and apoptosis and their clinical implications in OC. We highlight the current challenges faced in different SNP-based studies. Various computational methods and bioinformatic tools employed to predict the functional impact of SNPs have also been comprehensively reviewed concerning OC research. Overall, this review identifies that variants in the DDR and HRR pathways are the most studied, implying their critical role in the disease. Conversely, variants in other pathways, such as NHEJ, MMR, cell cycle, apoptosis, telomere maintenance, and PARP genes, have been explored the least.
Collapse
Affiliation(s)
- Harshavardhani Canchi Sistla
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA 02215, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
2
|
Watrowski R, Schuster E, Van Gorp T, Hofstetter G, Fischer MB, Mahner S, Polterauer S, Zeillinger R, Obermayr E. Association of the Single Nucleotide Polymorphisms rs11556218, rs4778889, rs4072111, and rs1131445 of the Interleukin-16 Gene with Ovarian Cancer. Int J Mol Sci 2024; 25:10272. [PMID: 39408600 PMCID: PMC11477281 DOI: 10.3390/ijms251910272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) of the IL-16 gene have been reported to influence the risk of several cancers, but their role in ovarian cancer (OC) has not been studied. Using the restriction fragment length polymorphism (PCR-RFLP) method, we examined four IL-16 SNPs: rs11556218 (T > G), rs4778889 (T > C), rs4072111 (C > T), and rs1131445 (T > C) in blood samples from 413 women of Central European descent, including 200 OC patients and 213 healthy controls. Among the patients, 62% were postmenopausal, 84.5% were diagnosed in late stages (FIGO IIb-IV), and 73.5% had high-grade serous OC (HGSOC). Minor allele frequencies in controls were 9.2% for rs11556218 (G allele), 13.7% for rs4778889 (C allele), 10.4% for rs4072111 (T allele), and 32.3% for rs1131445 (C allele). We found significant associations of rs11556218 (G vs. T allele: OR 2.76, 95% CI 1.84-4.14, p < 0.0001) with elevated OC risk in the whole cohort (p < 0.001) and in both premenopausal (p < 0.001) and postmenopausal (p = 0.001) subgroups. These associations remained significant across heterozygote (p < 0.001), dominant (p < 0.001), and overdominant (p < 0.001) models. IL-16 rs4778889 was associated with OC risk predominantly in premenopausal women (p < 0.0001 in almost all models). In the whole cohort, the C allele was associated with OC risk (OR 1.54, CI 95% 1.06-2.23, p = 0.024), and the association of rs4778889 was significant in dominant (p = 0.019), overdominant (p = 0.033), and heterozygote (p = 0.027) models. Furthermore, rs4778889 was linked with HGSOC (p = 0.036) and endometriosis-related OC subtypes (p = 0.002). No significant associations were found for rs4072111 or rs1131445 (p = 0.81 or 0.47, respectively). In conclusion, rs11556218 and rs4778889 SNPs are associated with OC risk, especially in premenopausal women.
Collapse
Affiliation(s)
- Rafał Watrowski
- Department of Obstetrics and Gynecology, Helios Hospital Muellheim, Teaching Hospital of the University of Freiburg, Heliosweg 1, 79379 Muellheim, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| | - Toon Van Gorp
- Division of Gynecologic Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
- Leuven Cancer Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Stefan Polterauer
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| |
Collapse
|
3
|
Jie Z, Li P, Wu H, Zhou Y, Wu J. Polymorphisms in miR-17-92 cluster promoter region is associated with risk and prognosis of endometrial cancer. Medicine (Baltimore) 2024; 103:e39326. [PMID: 39151520 PMCID: PMC11332704 DOI: 10.1097/md.0000000000039326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/13/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Accumulating researches have reported that miR-17-92 cluster expression has strong association with tumorigenesis. In this study, we investigated the effects of 2 genetic polymorphisms in the promoter region of the miR-17-92 cluster and the risk and prognosis of endometrial cancer in northern Chinese women. Two polymorphisms (rs9588884 and rs982873) in the promoter of miR-17-92 cluster were genotyped by polymerase chain reaction and ligase detection reaction (PCR-LDR) in398 EC patients and 420 controls. The levels of miR-17-92 mRNA were investigated in 65EC tissues by real-time quantitative polymerase chain reaction (RT-qPCR). The impact of genetic features on the risk and clinical outcomes of EC was analyzed. The prognostic value of hsa-miR-17 and hsa-miR-20a in EC patients was assessed using the Kaplan-Meier plotter database. The results showed that a significant decrease in risk of EC with rs9588884 (GG vs CC: OR = 0.49, 95% CI = 0.32-0.78, P = .002; G vs C: OR = 0.75, 95% CI = 0.62-0.91, P = .005, respectively). Similarly, association was found between rs982873 and a decreased risk of EC (CC vs TT: OR = 0.53, 95% CI = 0.34-0.82, P = .004; C vs T: OR = 0.77, 95% CI = 0.63-0.94, P = .010, respectively). Moreover, survival analysis showed that the CG or GG genotype of rs9588884 may significantly increase overall survival (OS) compared with the CC genotype in the 5-year follow-up (HR = 0.49, 95% CI = 0.29-0.82 and HR = 0.36, 95% CI = 0.16-0.83, respectively). RT-qPCR results showed that the expression level of miR-17-92 mRNA in EC tissues with the rs9588884 GG genotype was significantly lower than those with the GC + CC genotype (P = .030). However, there was no significant difference in the prognosis and expression level of miR-17-92mRNA in tissues of EC patients with different genotypes of rs982873 (P = .343). In addition, analysis using Kaplan-Meier plotter database showed that high hsa-miR-20a expression was significantly correlated with poor OS in EC patients (HR = 1.63, 95% CI = 1.02-2.61, P = .039). The genetic polymorphisms rs9588884 and rs982873 in the promoter of miR-17-92 cluster decreased EC risk. Both rs9588884 and the expression level of hsa-miR-20a mRNA may be associated with its clinical outcome in EC patients.
Collapse
Affiliation(s)
- Zhihui Jie
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Ping Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Huili Wu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Yan Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Jianlei Wu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
Sahota JS, Thakur RS, Guleria K, Sambyal V. RAD51 and Infertility: A Review and Case-Control Study. Biochem Genet 2024; 62:1216-1230. [PMID: 37563467 DOI: 10.1007/s10528-023-10469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
RAD51 is a highly conserved recombinase involved in the strand invasion/exchange of double-stranded DNA by homologous single-stranded DNA during homologous recombination repair. Although a majority of existing literature associates RAD51 with the pathogenesis of various types of cancer, recent reports indicate a role of RAD51 in maintenance of fertility. The present study reviews the role of RAD51 and its interacting proteins in spermatogenesis/oogenesis and additionally reports the findings from the molecular genetic screening of RAD51 135 G > C polymorphism in infertile cases and controls. Fifty-nine articles from PubMed and Google Scholar related to the reproductive role of RAD51 were reviewed. For case-control study, the PCR-RFLP method was used to screen the RAD51 135 G > C polymorphism in 201 infertile cases (100 males, 101 females) and 201 age- and gender-matched healthy controls (100 males, 101 females) from Punjab, North-West India. The review of literature shows that RAD51 is indispensable for spermatogenesis and oogenesis in animal models. Reports on the role of RAD51 in human fertility are limited, however it is involved in the pathogenesis of infertility in both males and females. Molecular genetic analyses in the infertile cases and healthy controls showed no statistically significant difference in the genotypic and allelic frequencies for RAD51 135 G > C polymorphism, even after segregation of the cases by type of infertility (primary/secondary). Therefore, the present study concluded that the RAD51 135 G > C polymorphism was neither associated with male nor female infertility in North-West Indians. This is the first report on RAD51 135 G > C polymorphism and infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Ranveer Singh Thakur
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India.
| |
Collapse
|
5
|
Watrowski R, Schuster E, Hofstetter G, Fischer MB, Mahner S, Van Gorp T, Polterauer S, Zeillinger R, Obermayr E. Association of Four Interleukin-8 Polymorphisms (-251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines 2024; 12:321. [PMID: 38397923 PMCID: PMC10886609 DOI: 10.3390/biomedicines12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Interleukin-8 (IL-8) is involved in the regulation of inflammatory processes and carcinogenesis. Single-nucleotide polymorphisms (SNPs) within the IL-8 gene have been shown to alter the risks of lung, gastric, or hepatocellular carcinomas. To date, only one study examined the role of IL-8 SNPs in ovarian cancer (OC), suggesting an association between two IL-8 SNPs and OC risk. In this study, we investigated four common IL-8 SNPs, rs4073 (-251 A>T), rs2227306 (+781 C>T), rs2227543 (+1633 C>T), and rs1126647 (+2767 A>T), using the restriction fragment length polymorphism (PCR-RFLP) technique. Our study included a cohort of 413 women of Central European descent, consisting of 200 OC patients and 213 healthy controls. The most common (73.5%) histological type was high-grade serous OC (HGSOC), whereas 28/200 (14%) patients had endometriosis-related (clear cell or endometrioid) OC subtypes (EROC). In postmenopausal women, three of the four investigated SNPs, rs4073 (-251 A>T), rs2227306 (+781 C>T), and rs2227543 (+1633 C>T), were associated with OC risk. Furthermore, we are the first to report a significant relationship between the T allele or TT genotype of SNP rs1126647 (+2767 A>T) and the EROC subtype (p = 0.02 in the co-dominant model). The TT homozygotes were found more than twice as often in EROC compared to other OC subtypes (39% vs. 19%, p = 0.015). None of the examined SNPs appeared to influence OC risk in premenopausal women, nor were they associated with the aggressive HGSOC subtype or the stage of disease at the initial diagnosis.
Collapse
Affiliation(s)
- Rafał Watrowski
- Department of Obstetrics and Gynecology, Helios Hospital Muellheim, Teaching Hospital of the University of Freiburg, Heliosweg 1, 79379 Muellheim, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria;
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria;
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Sven Mahner
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Toon Van Gorp
- Division of Gynaecologic Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
- Leuven Cancer Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Stefan Polterauer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| |
Collapse
|
6
|
Zhang L, Pozsgai É, Song Y, Macharia J, Alfatafta H, Zheng J, Li Z, Liu H, Kiss I. The relationship between single nucleotide polymorphisms and skin cancer susceptibility: A systematic review and network meta-analysis. Front Oncol 2023; 13:1094309. [PMID: 36874118 PMCID: PMC9975575 DOI: 10.3389/fonc.2023.1094309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) interfere with the function of certain genes and thus may influence the probability of skin cancer. The correlation between SNPs and skin cancer (SC) lacks statistical power, however. Therefore, the purpose of this study was to identify the gene polymorphisms involved in skin cancer susceptibility using network meta-analysis and to determine the relationship between SNPs and SC risk. Methods PubMed, Embase, and Web of Science were searched for articles including "SNP" and different types of SC as keywords between January 2005 and May 2022. The Newcastle-Ottawa Scale was used to assess bias judgments. The odds ratio (ORs) and their 95% confidence intervals (CIs) were determined to estimate heterogeneity within and between studies. Meta-analysis and network meta-analysis were carried out to identify the SNPs associated with SC. The P-score of each SNP was compared to obtain the rank of probability. Subgroup analyses were performed by cancer type. Results A total of 275 SNPs from 59 studies were included in the study. Two subgroup SNP networks using the allele model and dominant model were analyzed. The alternative alleles of rs2228570 (FokI) and rs13181 (ERCC2) were the first-ranking SNPs in both subgroups one and two of the allele model, respectively. The homozygous dominant genotype and heterozygous genotype of rs475007 in subgroup one and the homozygous recessive genotype of rs238406 in subgroup two were most likely to be associated with skin cancer based on the dominant model. Conclusions According to the allele model, SNPs FokI rs2228570 and ERCC2 rs13181 and, according to the dominant model, SNPs MMP1 rs475007 and ERCC2 rs238406 are closely linked to SC risk.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Pécs, Hungary
| | - Éva Pozsgai
- Department of Public Health Medicine, Doctoral School of Clinical Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Yongan Song
- Department of Public Health Medicine, Doctoral School of Clinical Medicine, University of Pécs Medical School, Pécs, Hungary
| | - John Macharia
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Pécs, Hungary
| | - Huda Alfatafta
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Pécs, Hungary
| | - Jia Zheng
- Department of Clinical Epidemiology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhaoyi Li
- Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary
| | - Hongbo Liu
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - István Kiss
- Department of Public Health Medicine, Doctoral School of Clinical Medicine, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|