1
|
Hou Y, Zhao Z, Li P, Cao Y, Zhang Y, Guo C, Nie X, Hou J. Combination therapies with Wnt signaling inhibition: A better choice for prostate cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189186. [PMID: 39332651 DOI: 10.1016/j.bbcan.2024.189186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The intractability and high mortality rate of castration-resistant prostate cancer (CRPC) remain the most challenging problems in the field of prostate cancer (PCa). Emerging evidence has shown that the dysregulation of Wnt signaling pathways, which are highly conserved cascades that regulate embryonic development and maintain tissue homeostasis, is involved in various stages of PCa occurrence and progression. In this review, we systemically discuss the mechanisms by which the androgen receptor (AR) signaling pathway and Wnt signaling pathways participate in the occurrence of PCa and its progression to CRPC. Specifically, we elaborate on how Wnt signaling pathways induce the malignant transformation of prostate cells, promote the malignant progression of PCa and establish an immunosuppressive prostate tumor microenvironment through interaction with the AR pathway or in an AR-independent manner. We also discuss how Wnt signaling pathways enhances the stemness characteristics of prostate cancer stem cells (PCSCs) to induce the occurrence and metastasis of CPPC. Additionally, we discuss the latest progress in the use of different types of drugs that inhibit the Wnt signaling pathways in the treatment of PCa. We believe that the combination of Wnt signaling-based drugs with endocrine and other therapies is necessary and may enhance the clinical efficacy in the treatment of all types of PCa.
Collapse
Affiliation(s)
- Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China
| | - Zhenhua Zhao
- Ma'anshan 86 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Ma'anshan 243100, China
| | - Pan Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yujia Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changsheng Guo
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China.
| |
Collapse
|
2
|
Wang K, Ma F, Arai S, Wang Y, Varkaris A, Poluben L, Voznesensky O, Xie F, Zhang X, Yuan X, Balk SP. WNT5a Signaling through ROR2 Activates the Hippo Pathway to Suppress YAP1 Activity and Tumor Growth. Cancer Res 2023; 83:1016-1030. [PMID: 36622276 PMCID: PMC10073315 DOI: 10.1158/0008-5472.can-22-3003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Noncanonical Wnt signaling by WNT5a has oncogenic and tumor suppressive activities, but downstream pathways mediating these specific effects remain to be fully established. In a subset of prostate cancer organoid culture and xenograft models, inhibition of Wnt synthesis stimulated growth, whereas WNT5a or a WNT5a mimetic peptide (Foxy5) markedly suppressed tumor growth. WNT5a caused a ROR2-dependent decrease in YAP1 activity, which was associated with increased phosphorylation of MST1/2, LATS1, MOB1, and YAP1, indicating Hippo pathway activation. Deletion of MST1/2 abrogated the WNT5a response. WNT5a similarly activated Hippo in ROR2-expressing melanoma cells, whereas WNT5a in ROR2-negative cells suppressed Hippo. This suppression was associated with increased inhibitory phosphorylation of NF2/Merlin that was not observed in ROR2-expressing cells. WNT5a also increased mRNA encoding Hippo pathway components including MST1 and MST2 and was positively correlated with these components in prostate cancer clinical datasets. Conversely, ROR2 and WNT5a expression was stimulated by YAP1, and correlated with increased YAP1 activity in clinical datasets, revealing a WNT5a/ROR2 negative feedback loop to modulate YAP1 activity. Together these findings identify Hippo pathway activation as a mechanism that mediates the tumor suppressive effects of WNT5a and indicate that expression of ROR2 may be a predictive biomarker for responsiveness to WNT5a-mimetic drugs. SIGNIFICANCE WNT5a signaling through ROR2 activates the Hippo pathway to downregulate YAP1/TAZ activity and suppress tumor growth, identifying ROR2 as a potential biomarker to identify patients that could benefit from WNT5a-related agents.
Collapse
Affiliation(s)
- Keshan Wang
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Ma
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Seiji Arai
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yun Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR, China
| | - Andreas Varkaris
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Larysa Poluben
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Olga Voznesensky
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Fang Xie
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Yuan
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
3
|
WNT5A in tumor development and progression: A comprehensive review. Biomed Pharmacother 2022; 155:113599. [PMID: 36089446 DOI: 10.1016/j.biopha.2022.113599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
The investigation of tumor microenvironment (TME) is essential to better characterize the complex cellular crosstalk and to identify important immunological phenotypes and biomarkers. The niche is a crucial contributor to neoplasm initiation, maintenance and progression. Therefore, a deeper analysis of tumor surroundings could improve cancer diagnosis, prognosis and assertive treatment. Thus, the WNT family exerts a critical action in tumorigenesis of different types of neoplasms due to dysregulations in the TME. WNT5A, an evolutionary WNT member, is involved in several cellular and physiopathological processes, in addition to tissue homeostasis. The WNT5A protein exerts paradoxical effects while acting as both an oncogene or tumor suppressor by regulating several non-canonical signaling pathways, and consequently interfering in cell growth, cytoskeletal remodeling, migration and invasiveness. This review focuses on a thorough characterization of the role of WNT5A in neoplastic transformation and progression, which may help to understand the prognostic potentiality of WNT5A and its features as a therapeutic target in several cancers. Additionally, we herein summarized novel findings on the mechanisms by which WNT5A might favor tumorigenesis or suppression of cancer progression and discussed the recently developed treatment strategies using WNT5A as a protagonist.
Collapse
|
4
|
Puzyrenko A, Kumar SN, Pantazis CG, Iczkowski KA. Inverse co-expression of EZH2 and acetylated H3K27 in prostatic tissue. Ann Diagn Pathol 2022; 59:151956. [DOI: 10.1016/j.anndiagpath.2022.151956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/27/2022]
|
5
|
Yu S, Meng H, Shi S, Cao S, Bian T, Zhao H. miR-548d-3p inhibits the invasion and migration of gastric cancer cells by targeting GKN1. J Clin Lab Anal 2022; 36:e24520. [PMID: 35666636 PMCID: PMC9279950 DOI: 10.1002/jcla.24520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to explore the function and mechanism of GKN1 in gastric cancer (GC) progression. Methods Firstly, we used GEO2R to perform differential gene analysis on GSE26942 and GSE79973 and constructed the protein–protein interaction network of differential genes by STRING. Next, the cytoHubba, Mcode plugins, and GEPIA were used to obtain our follow‐up research object GKN1. Then, the function of GKN1 in GC was verified by scratch and transwell assay in GC cells. We further analyzed the genes related to GKN1 through LinkedOmics, and exported top 100 genes positively or negatively correlated with GKN1. Meanwhile, Metascape was performed on these genes. Finally, we analyzed the miRNAs that bind to GKN1 through the miRDB and verified the correlation between miR‐548d‐3p and GKN1 using dual‐fluorescence and quantitative PCR experiments. Results Bioinformatics analysis showed that there were 52 differential genes on GSE26942 and GSE79973. In addition, the results of functional assays indicated that overexpressed GKN1 can inhibit GC cell migration and invasion, while GKN1 knockdown demonstrated the opposite effect. Additionally, Metascape analysis results showed that the 3′‐UTR region of mRNA is rich in AU sequences, based on which we infer that mRNA may be regulated by miRNA. Dual‐fluorescence and quantitative PCR assays clarified that miR‐548d‐3p may be one of the target miRNAs of GKN1, which was up‐regulated in GC tissues. Conclusions In summary, we clarified that miR‐548d‐3p regulates GKN1 to participate in GC cell migration and invasion, and provides a possible target for the prognostic diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Senlong Yu
- Department of Gastrointestinal Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Hongjie Meng
- Department of Gastrointestinal Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Shengguang Shi
- Department of Gastrointestinal Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Shenghui Cao
- Department of General Surgery, Zhuji Chinese Traditional Medicine Hospital, Zhuji, China
| | - Tianhua Bian
- Department of General Surgery, Zhuji Chinese Traditional Medicine Hospital, Zhuji, China
| | - Haifeng Zhao
- Department of General Surgery, Zhuji Chinese Traditional Medicine Hospital, Zhuji, China
| |
Collapse
|
6
|
The IGSF1, Wnt5a, FGF14, and ITPR1 Gene Expression and Prognosis Hallmark of Prostate Cancer. Rep Biochem Mol Biol 2022; 11:44-53. [PMID: 35765527 PMCID: PMC9208564 DOI: 10.52547/rbmb.11.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer is considered as the second leading cause of cancer related death in men worldwide and the third frequent cancer among Iranian men. Despite the use of PSA as the only biomarker for early diagnosis of prostate cancer, its application in clinical settings is under debate. Therefore, the introduction of new molecular markers for early detection of prostate cancer is needed. Methods In the present study we intended to evaluate the expression of IGSF1, Wnt5a, FGF14, and ITPR1 in prostate cancer specimens by real time PCR. Biopsy samples of 40 prostate cancer cases and 41 healthy Iranian men were compared to determine the relative gene expression of IGSF1, Wnt5a, FGF14, and ITPR1 by real time PCR. Results Our results showed that Wnt5a, FGF14, and IGSF1 were significantly overexpressed in the prostate cancer patients while the mean relative expression of ITPR1 showed a significant decrease in PCa samples compared to healthy controls. Conclusion According to results of the present study, the combination panel of IGSF1, Wnt5a, FGF14, and ITPR1 genes could be considered as potential genetic markers for prostate cancer diagnosis. However further studies on larger populations and investigating the clinicopathological relevance of these genes is needed.
Collapse
|
7
|
Kisel W, Conrad S, Borkowetz A, Furesi G, Füssel S, Sommer U, Rauner M, Thomas C, Baretton GB, Schaser KD, Hofbauer C, Hofbauer LC. High stroma-derived WNT5A is an indicator for low-risk prostate cancer. FEBS Open Bio 2021; 11:1186-1194. [PMID: 33639039 PMCID: PMC8016115 DOI: 10.1002/2211-5463.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of cancer‐related death in men. Tumor‐derived protein derived from Wnt5A gene (WNT5A) plays an important role in primary and metastatic PCa. Surrounding stroma cells also produce WNT5A, which may modulate the biology of PCa. Here, we assessed the role of stroma‐derived WNT5A (stWNT5A) in primary PCa. A tissue microarray of samples obtained from 400 patients who underwent radical prostatectomy and control samples from 41 patients with benign prostate hyperplasia (BPH) was immunohistochemically assessed for expression of stWNT5A. The cores were scored for staining intensity: 0 (no staining), 1 (weak), 2 (moderate), or 3 (strong) and the stained stromal surface area: 0 (0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), or 4 (76–100%). Gleason Score (GS) and TNM‐stage were assessed by stratifying the cohort into high‐risk (≥ pT3, pN1, GS ≥ 8) and non‐high‐risk patients. Ki67 and TUNEL assays were performed to assess proliferation and apoptosis. Expression of stWNT5A in BPH and tumor‐free control samples was 1.2‐fold higher compared to tumor samples (P < 0.001). Non‐high‐risk patients had a higher stWNT5A score than high‐risk patients (P < 0.05). stWNT5A expression was not correlated with overall and cancer‐specific survival. Proliferation (r2 = 0.038, P < 0.001) and apoptosis (r2 = 0.277, P < 0.001) negatively correlated with stWNT5A expression. In summary, we show that expression of stWNT5A is higher in benign tissue and non‐high‐risk PCa. Stroma‐derived Wnt signaling and tumor‐derived Wnt may differentially impact on tumor behavior. Future studies are warranted to dissect the Wnt profile in tumor vs. surrounding stroma tissues.
Collapse
Affiliation(s)
- Wadim Kisel
- University Center for Traumatology, Orthopedics and Plastic Surgery, Technische Universität Dresden, Germany
| | - Stefanie Conrad
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Germany
| | | | - Giulia Furesi
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Susanne Füssel
- Department of Urology, Technische Universität Dresden, Germany
| | - Ulrich Sommer
- Department of Pathology, Technische Universität Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Germany
| | | | | | - Klaus-Dieter Schaser
- University Center for Traumatology, Orthopedics and Plastic Surgery, Technische Universität Dresden, Germany
| | | | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Germany
| |
Collapse
|
8
|
Yadav V, Jobe N, Mehdawi L, Andersson T. Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handb Exp Pharmacol 2021; 269:279-303. [PMID: 34455485 DOI: 10.1007/164_2021_528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
WNT signalling is known to be a crucial regulator of embryonic development and tissue homeostasis. Aberrant expression of WNT signalling elements or their mutations has been implicated in carcinogenesis and/or the progression of several different cancer types. Investigations of how WNT signalling affects carcinogenesis and cancer progression have revealed that it has essential roles in the regulation of proliferation, apoptosis, and cancer stemness and in angiogenesis and metastasis. Consequently, WNT-targeted therapy has gained much attention and has resulted in the development of several small molecules, the majority of which act as inhibitors of different WNT signalling events. However, although numerous inhibitory WNT signalling drug candidates have been included in clinical trials, no significant breakthroughs have been made. This could possibly be due to problems with inefficient binding to the target, compensatory signalling mechanisms and toxicity towards normal cells. Therapeutic peptides targeting WNT signalling in cancer cells have been developed as an alternative approach, with the hope that they might overcome the limitations reported for small WNT inhibitory molecules. In this chapter, we describe recent developments made in the design and characterization of WNT signalling-derived peptides aiming at their use as alternative cancer therapeutics and/or combined adjuvant therapy to conventional therapies.
Collapse
Affiliation(s)
- Vikas Yadav
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Njainday Jobe
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lubna Mehdawi
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
9
|
Lund CM, Dyhl-Polk A, Nielsen DL, Riis LB. Wnt5a expression and prognosis in stage II-III colon cancer. Transl Oncol 2020; 14:100892. [PMID: 33045677 PMCID: PMC7553443 DOI: 10.1016/j.tranon.2020.100892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer metastases accounts for most cancer deaths. The secreting glycoprotein Wnt5a impairs tumor cell migration and reduces invasiveness and metastasis. High Wnt5a expression in tumor cells is correlated to better outcomes in patients with breast, prostate and epithelial ovarian cancer. We aimed to investigate the association between the Wnt5a expression and outcomes in patients with colon cancer (CC) stage II/III. We performed a retrospective single-center study evaluating 345 patients with radical resection for primary CC, stage II/III, who started 6 months of adjuvant chemotherapy with 5-FU or capecitabine ± oxaliplatin between 2001 and 2015. Archived formalin-fixed paraffin embedded tumor tissue from resection specimens were stained with Wnt5a antibody using immunohistochemistry. Cytoplasmatic Wnt5a staining was assessed according to intensity and percentage of stained cells. Patients were divided in groups depending on high (n = 230) or low (n = 115) Wnt5a expression. Disease free survival (DFS) and overall survival (OS) were analyzed for the two groups using Kaplan-Meier plots and Long rank test. Patients with Wnt5a-negative tumors had significantly poorer performance status (PS) than patients with high Wnt5a expression (p = 0.046). No significant difference was seen between patients with low and high Wnt5a expression in terms of 5-year DFS (p = 0.517) or 5-year OS (p = 0.415). Poor PS was associated with lower DFS (p = 0.002) and OS (p < 0.001). In conclusion, we found no significant difference in prognosis for patients with stage II/III CC depending on their Wnt5a expression. Patients with Wnt5a-negative tumors had significant poorer PS than patients with higher levels. Poor PS was associated with lower DFS and OS. High expression of Wnt5a in tumor cells are correlated to significantly better outcomes in patients with different cancers. We found no difference in survival among patients with colon cancer stage II-III depending on their Wnt5a expression. Patients with low Wnt5a expression had significantly poor performance status than patients with high levels. Poor performance status was shown to predict poorer outcomes.
Collapse
Affiliation(s)
- Cecilia Margareta Lund
- Department of Medicine, Copenhagen University Hospital, Herlev and Gentofte, Denmark; Copenage, Copenhagen Center for Clinical Age Research, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark.
| | - Anne Dyhl-Polk
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Dorte Lisbeth Nielsen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark
| | - Lene Buhl Riis
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark; Department of Pathology, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| |
Collapse
|
10
|
Chen X, Wang J, Peng X, Liu K, Zhang C, Zeng X, Lai Y. Comprehensive analysis of biomarkers for prostate cancer based on weighted gene co-expression network analysis. Medicine (Baltimore) 2020; 99:e19628. [PMID: 32243390 PMCID: PMC7440253 DOI: 10.1097/md.0000000000019628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the leading causes of cancer-related death. In the present research, we adopted a comprehensive bioinformatics method to identify some biomarkers associated with the tumor progression and prognosis of PCa. METHODS Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were applied for exploring gene modules correlative with tumor progression and prognosis of PCa. Clinically Significant Modules were distinguished, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to Annotation, Visualization and Integrated Discovery (DAVID). Protein-protein interaction (PPI) networks were used in selecting potential hub genes. RNA-Seq data and clinical materials of prostate cancer from The Cancer Genome Atlas (TCGA) database were used for the identification and validation of hub genes. The significance of these genes was confirmed via survival analysis and immunohistochemistry. RESULTS 2688 DEGs were filtered. Weighted gene co-expression network was constructed, and DEGs were divided into 6 modules. Two modules were selected as hub modules which were highly associated with the tumor grades. Functional enrichment analysis was performed on genes in hub modules. Thirteen hub genes in these hub modules were identified through PPT networks. Based on TCGA data, 4 of them (CCNB1, TTK, CNN1, and ACTG2) were correlated with prognosis. The protein levels of CCNB1, TTK, and ACTG2 had a degree of differences between tumor tissues and normal tissues. CONCLUSION Four hub genes were identified as candidate biomarkers and potential therapeutic targets for further studies of exploring molecular mechanisms and individual therapy on PCa.
Collapse
Affiliation(s)
- Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
- Shantou University Medical College, Shantou, Guangdong
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
- Shantou University Medical College, Shantou, Guangdong
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
- Anhui Medical University, Hefei, Anhui, China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
| | - Xingzhen Zeng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen
| |
Collapse
|
11
|
Li X, Ortiz MA, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med (Maywood) 2020; 245:411-426. [PMID: 31996036 PMCID: PMC7082880 DOI: 10.1177/1535370220901683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the decades, many studies have illustrated the critical roles of Wnt signaling pathways in both developmental processes as well as tumorigenesis. Due to the complexity of Wnt signaling regulation, there are still questions to be addressed about ways cells are able to manipulate different types of Wnt pathways in order to fulfill the requirements for normal or cancer development. In this review, we will describe different types of Wnt signaling pathways and their roles in both normal developmental processes and their role in cancer development and progression. Additionally, we will briefly introduce new strategies currently in clinical trials targeting Wnt signaling pathway components for cancer therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Maria A Ortiz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
12
|
Fisher RR, Pleskow HM, Bedingfield K, Miyamoto DT. Noncanonical Wnt as a prognostic marker in prostate cancer: “you can’t always get what you Wnt”. Expert Rev Mol Diagn 2019; 20:245-254. [DOI: 10.1080/14737159.2020.1702522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rebecca R. Fisher
- Massachusetts General Hospital Cancer Center and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haley M. Pleskow
- Massachusetts General Hospital Cancer Center and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen Bedingfield
- Massachusetts General Hospital Cancer Center and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T. Miyamoto
- Massachusetts General Hospital Cancer Center and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Carneiro I, Quintela-Vieira F, Lobo J, Moreira-Barbosa C, Menezes FD, Martins AT, Oliveira J, Silva R, Jerónimo C, Henrique R. Expression of EMT-Related Genes CAMK2N1 and WNT5A is increased in Locally Invasive and Metastatic Prostate Cancer. J Cancer 2019; 10:5915-5925. [PMID: 31762801 PMCID: PMC6856586 DOI: 10.7150/jca.34564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Prostate cancer (PCa) varies clinically from very indolent, not requiring therapeutic intervention, to highly aggressive, entailing radical treatment. Currently, stratification of PCa aggressiveness is mostly based on Gleason score, serum PSA and TNM stage, but outcome prediction in an individual basis is suboptimal. Thus, perfecting pre-therapeutic discrimination between indolent and aggressive PCa, avoiding overtreatment is a major challenge. Epithelial to mesenchymal transition (EMT) allows epithelial cells to acquire mesenchymal properties, constituting a critical step in tumor invasion and metastization. Thus, we hypothesized that EMT-related markers might allow for improved assessment of PCa aggressiveness. Methods and Results: Using RealTime ready Custom Panel 384 assay, 93 EMT-related genes were assessed in normal prostate tissues (NPT, n=5), stage pT2a+b-PCa (n=5) and stage pT3b-PCa (n=5), from which CAMK2N1, CD44, KRT14, TGFβ3 and WNT5A genes emerged as the most significantly altered. Expression levels were then evaluated in a larger series (16 NPT and 94 PCa) of frozen tissues using quantitative RT-PCR. Globally, CAMK2N1, CD44 and WNT5A displayed higher expression levels at higher stages and less differentiated PCa. CAMK2N1 and WNT5A immunoexpression analysis disclosed significantly lower expression in NPT and increasing proportion of high-expression cases from pT2a+b to pT3b and metastatic PCa. Furthermore, higher CAMK2N1 and WNT5A transcript levels associated with shorter disease-free and disease-specific survival. In multivariable analysis, a trend for WNT5A expression levels to independently predict DFS was disclosed (p=0.056). Conclusions: Globally, our findings suggest an association between PCa aggressiveness and increased expression of CAMK2N1 and WNT5A, reflecting the acquisition of effective EMT characteristics by PCa cells.
Collapse
Affiliation(s)
- Isa Carneiro
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Filipa Quintela-Vieira
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,School of Health, Polytechnic of Porto (ESS), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Francisco Duarte Menezes
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Regina Silva
- School of Health, Polytechnic of Porto (ESS), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| |
Collapse
|
14
|
Mesci A, Lucien F, Huang X, Wang EH, Shin D, Meringer M, Hoey C, Ray J, Boutros PC, Leong HS, Liu SK. RSPO3 is a prognostic biomarker and mediator of invasiveness in prostate cancer. J Transl Med 2019; 17:125. [PMID: 30987640 PMCID: PMC6466739 DOI: 10.1186/s12967-019-1878-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background While prostate cancer can often manifest as an indolent disease, the development of locally-advanced or metastatic disease can cause significant morbidity or mortality. Elucidation of molecular mechanisms contributing to disease progression is crucial for more accurate prognostication and effective treatments. R-Spondin 3 (RSPO3) is a protein previously implicated in the progression of colorectal and lung cancers. However, a role for RSPO3 in prostate cancer prognosis and behaviour has not been explored. Methods We compare the relative levels of RSPO3 expression between normal prostate tissue and prostate cancer in two independent patient cohorts (Taylor and GSE70768—Cambridge). We also examine the association of biochemical relapse with RSPO3 levels in these cohorts. For elucidation of the biological effect of RSPO3, we use siRNA technology to reduce the levels of RSPO3 in established prostate cancer cell lines, and perform in vitro proliferation, invasion, western blotting for EMT markers and clonogenic survival assays for radiation resistance. Furthermore, we show consequences of RSPO3 knockdown in an established chick chorioallantoic membrane (CAM) assay model of metastasis. Results RSPO3 levels are lower in prostate cancer than normal prostate, with a tendency for further loss in metastatic disease. Patients with lower RSPO3 expression have lower rates of biochemical relapse-free survival. SiRNA-mediated loss of RSPO3 results in no change to clonogenic survival and a lower proliferative rate, but increased invasiveness in vitro with induction of epithelial–mesenchymal transition (EMT) markers. Consistent with these results, lower RSPO3 expression translates to greater metastatic capacity in the CAM assay. Together, our preclinical findings identify a role of RSPO3 downregulation in prostate cancer invasiveness, and provide a potential explanation for how RSPO3 functions as a positive prognostic marker in prostate cancer. Electronic supplementary material The online version of this article (10.1186/s12967-019-1878-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aruz Mesci
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | | | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Eric H Wang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David Shin
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michelle Meringer
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Christianne Hoey
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jessica Ray
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Hon S Leong
- Mayo Clinic Cancer Centre, Rochester, MN, USA
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Peng KY, Chang HM, Lin YF, Chan CK, Chang CH, Chueh SCJ, Yang SY, Huang KH, Lin YH, Wu VC, Wu KD. miRNA-203 Modulates Aldosterone Levels and Cell Proliferation by Targeting Wnt5a in Aldosterone-Producing Adenomas. J Clin Endocrinol Metab 2018; 103:3737-3747. [PMID: 30085132 DOI: 10.1210/jc.2018-00746] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/27/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The aberrant expression or alternation of miRNA in the pathogenesis of aldosterone-producing adenomas (APAs) is still largely unknown. OBJECTIVE We investigated the role of miRNA-203 (screened from miRNA microarrays) and elucidated its effects on the Wnt/β-catenin pathway regarding aldosterone production and cell proliferation in APAs. METHODS miR-203 expression was upregulated or downregulated by transfecting miR-203 mimics or inhibitors into primary APA cells, the human adrenocortical cell line HAC15, and C57BL/6 mice. In vitro and biochemical data were correlated with the respective clinical parameters of APAs to evaluate their clinical importance. RESULTS The expression of miR-203 in human APA samples was significantly lower than that of peritumor adrenal samples. Tumoral miR-203 abundance correlated negatively with both plasma aldosterone level and tumor size in patients with APAs. miR-203 inhibitors increased aldosterone production and cell proliferation in HAC15 cells, and restoration of expression via miR-203 mimics showed decreased cell proliferation and aldosterone hypersecretion in APA cell cultures. In vivo selective inhibition of miR-203 via intra-adrenal injection of miR-203 inhibitors in mice led to a substantial increase in systolic blood pressure and plasma aldosterone levels. Additionally, the dual-luciferase reporter assay demonstrated that WNT5A is a direct target of miR-203. Furthermore, plasma Wnt5a levels in adrenal vein sampling were helpful in differentiating tumor localization, and preoperative plasma Wnt5a levels predicted the cure of hypertension after adrenalectomy. CONCLUSION We have demonstrated that attenuated miR-203 expression in APAs increases aldosterone production and the tumorigenesis of adrenal cells by activating the Wnt5a/β-catenin pathway.
Collapse
Affiliation(s)
- Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huang-Ming Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Feng Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin Chu, Taiwan
| | - Chia-Hui Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Hualien, Taiwan
| | - Shih-Chieh Jeff Chueh
- Cleveland Clinic Lerner College of Medicine and Glickman Urological and Kidney Institute, Cleveland Clinic, Ohio
| | - Shao-Yu Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- TAIPAI (Taiwan Primary Aldosteronism Investigation), Taipei, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- TAIPAI (Taiwan Primary Aldosteronism Investigation), Taipei, Taiwan
| | - Kwan-Dun Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- TAIPAI (Taiwan Primary Aldosteronism Investigation), Taipei, Taiwan
| |
Collapse
|
16
|
A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget 2018; 8:9572-9586. [PMID: 28030815 PMCID: PMC5354754 DOI: 10.18632/oncotarget.14161] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 01/22/2023] Open
Abstract
Activation of the Canonical Wnt pathway (CWP) has been linked to advanced and metastatic prostate cancer, whereas the Wnt5a-induced non-canonical Wnt pathway (NCWP) has been associated with both good and poor prognosis. A newly discovered NCWP, Wnt5/Fzd2, has been shown to induce epithelial-to-mesenchymal transition (EMT) in cancers, but has not been investigated in prostate cancer. The aim of this study was to investigate if the CWP and NCWP, in combination with EMT, are associated with metabolic alterations, aggressive disease and biochemical recurrence in prostate cancer. An initial analysis was performed using integrated transcriptomics, ex vivo and in vivo metabolomics, and histopathology of prostatectomy samples (n=129), combined with at least five-year follow-up. This analysis detected increased activation of NCWP through Wnt5a/ Fzd2 as the most common mode of Wnt activation in prostate cancer. This activation was associated with increased expression of EMT markers and higher Gleason score. The transcriptional association between NCWP and EMT was confirmed in five other publicly available patient cohorts (1519 samples in total). A novel gene expression signature of concordant activation of NCWP and EMT (NCWP-EMT) was developed, and this signature was significantly associated with metastasis and shown to be a significant predictor of biochemical recurrence. The NCWP-EMT signature was also associated with decreased concentrations of the metabolites citrate and spermine, which have previously been linked to aggressive prostate cancer. Our results demonstrate the importance of NCWP and EMT in prostate cancer aggressiveness, suggest a novel gene signature for improved risk stratification, and give new molecular insight.
Collapse
|
17
|
|
18
|
Canesin G, Evans-Axelsson S, Hellsten R, Krzyzanowska A, Prasad CP, Bjartell A, Andersson T. Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One 2017; 12:e0184418. [PMID: 28886116 PMCID: PMC5590932 DOI: 10.1371/journal.pone.0184418] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer patients with high WNT5A expression in their tumors have been shown to have more favorable prognosis than those with low WNT5A expression. This suggests that reconstitution of Wnt5a in low WNT5A-expressing tumors might be an attractive therapeutic approach. To explore this idea, we have in the present study used Foxy-5, a WNT5A mimicking peptide, to investigate its impact on primary tumor and metastasis in vivo and on prostate cancer cell viability, apoptosis and invasion in vitro. We used an in vivo orthotopic xenograft mouse model with metastatic luciferase-labeled WNT5A-low DU145 cells and metastatic luciferase-labeled WNT5A-high PC3prostate cancer cells. We provide here the first evidence that Foxy-5 significantly inhibits the initial metastatic dissemination of tumor cells to regional and distal lymph nodes by 90% and 75%, respectively. Importantly, this effect was seen only with the WNT5A-low DU145 cells and not with the WNT5A-high PC3 cells. The inhibiting effect in the DU145-based model occurred despite the fact that no effects were observed on primary tumor growth, apoptosis or proliferation. These findings are consistent with and supported by the in vitro data, where Foxy-5 specifically targets invasion without affecting apoptosis or viability of WNT5A-low prostate cancer cells. To conclude, our data indicate that the WNT5A-mimicking peptide Foxy-5, which has been recently used in a phase 1 clinical trial, is an attractive candidate for complimentary anti-metastatic treatment of prostate cancer patients with tumors exhibiting absent or low WNT5A expression.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Lund University, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Susan Evans-Axelsson
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rebecka Hellsten
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Chandra P. Prasad
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Lund University, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Tommy Andersson
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Lund University, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Thiele S, Rachner TD, Rauner M, Hofbauer LC. WNT5A and Its Receptors in the Bone-Cancer Dialogue. J Bone Miner Res 2016; 31:1488-96. [PMID: 27355180 DOI: 10.1002/jbmr.2899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
Wnt signaling is critical for tumorigenesis and skeletal remodeling. However, its contribution to the formation of metastatic bone lesions remains poorly defined. One major challenge of unraveling its role in cancer progression is the high complexity of Wnt signaling, which includes numerous ligands, receptors, and inhibitors, with intricate biological effects and specific signaling pathways depending on the cellular context. In this perspective, we summarize the role of the noncanonical Wnt ligand WNT5A in the development and metastatic process of osteotropic cancer entities. We focus on its tumor-suppressive function in breast cancer, tumor promoting effects in melanoma, and ambiguous role in prostate cancer, and discuss potential challenges and opportunities that may be associated with targeting Wnt signaling for cancer therapy and treatment of bone metastases. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stefanie Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| |
Collapse
|
21
|
Thiele S, Göbel A, Rachner TD, Fuessel S, Froehner M, Muders MH, Baretton GB, Bernhardt R, Jakob F, Glüer CC, Bornhäuser M, Rauner M, Hofbauer LC. WNT5A has anti-prostate cancer effects in vitro and reduces tumor growth in the skeleton in vivo. J Bone Miner Res 2015; 30:471-80. [PMID: 25224731 DOI: 10.1002/jbmr.2362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the most frequent malignancy in men, and a major cause of prostate cancer-related death is attributable to bone metastases. WNT5A is known to influence the clinical outcome of various cancer types, including prostate cancer, but the exact mechanisms remain unknown. The goal of this study was to assess the relevance of WNT5A for the development and progression of prostate cancer. WNT5A expression was determined in a cDNA and tissue microarray of primary tumor samples in well-defined cohorts of patients with prostate cancer. Compared with benign prostate tissue, the expression of WNT5A and its receptor Frizzled-5 was higher in prostate cancer, and patients with a WNT5A expression above the median had a higher probability of survival after 10 years. Using different osteotropic human prostate cancer cell lines, the influence of WNT5A overexpression and knock-down on proliferation, migration, and apoptosis was assessed. In vitro, WNT5A overexpression induced prostate cancer cell apoptosis and reduced proliferation and migration, whereas WNT5A knock-down showed opposite effects. In vivo, different xenograft models were used to determine the effects of WNT5A on tumor growth. Local tumor growth and tumor growth in the bone microenvironment was considerably diminished after WNT5A overexpression in PC3 cells. WNT5A exhibits antitumor effects in prostate cancer cells and may be suitable as a prognostic marker and therapeutic target for prostate cancer and associated skeletal metastases.
Collapse
Affiliation(s)
- Stefanie Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|